- happy-llm 第一章 NLP 基础概念
weixin_38374194
自然语言处理人工智能学习
文章目录一、什么是NLP?二、NLP发展三大阶段三、NLP核心任务精要四、文本表示演进史1.传统方法:统计表征2.神经网络:语义向量化课程地址:happy-llmNLP基础概念一、什么是NLP?核心目标:让计算机理解、生成、处理人类语言,实现人机自然交互。现状与挑战:成就:深度学习推动文本分类、翻译等任务达到近人类水平。瓶颈:歧义性、隐喻理解、跨文化差异等。二、NLP发展三大阶段时期代表技术核心思
- 地面电力巡检机器人系统设计(支持资料参考_相关定制)
摘要随着时代的发展,电力基础设施建设逐渐成为经济发展的重要一环。目前,巡检作业方式仍旧是以人工巡视为主,这样就会使得检修时间滞后,导致输电线路运行效率低下。机器人对释放劳动力和提高人们生活水平有着不可替代的地位,已经成为各国科技发展的重要战略。机器人可以为我们做一些我们人类做不到的事情也可以帮助我们去一些危险地区探索或
- 大小转换组件
叹一曲当时只道是寻常
前端javascript前端vue.js
一个小组件、用于转换大小为人类友好的格式{{formattedSize}}import{computed,defineProps}from'vue';constprops=defineProps();constsizeInBytes=computed(()=>{returntypeofprops.sizeInBytes==='string'?Number(props.sizeInBytes):pr
- 结构学习的理论
刘海东刘海东
机器人人工智能
结构学习的理论作者:刘海东,中国广东技术师范大学摘要这是第一篇研究结构学习的理论的论文,第一个部分概括了结构学习的整体构想,第二部分提出了结构学习的环境逻辑宇宙,第三、第四、第五部分阐述了中央图处理器、软件图、图思维的理论,以中央图处理器为机器脑,以软件图为机器身体,以图思维为机器生命活动,第六部分说明了机器生命和结构学习的现有研究成果。全文的主旨是向人类社会推荐机器生命结构学习的思想。关键词:结
- 【杂谈】- AlphaGenome:解锁基因组奥秘的强大AI引擎
视觉与物联智能
杂谈人工智能AI深度学习神经网络AGIAIGC
AlphaGenome:解锁基因组奥秘的强大AI引擎文章目录AlphaGenome:解锁基因组奥秘的强大AI引擎1、解读遗传指令的挑战2、理解AlphaGenome3、突破背后的科学4、性能基准5、实际应用和研究影响6、当前的局限性和未来方向7、普及基因组AI8、展望未来9、总结人类DNA中蕴含着约30亿个遗传密码,构成了生命的神秘蓝图。然而,我们对于这本庞大“指令手册”中细胞运作方式的认知,却仅
- 规则书在自动驾驶中的作用
初学大模型
自动驾驶
我们应该知道自动驾驶的重要性,它对车辆的控制牵扯到车内人员安全,车外的人的安全(车外哪里的人都不安全,有人会问车能上树?现在车真能上树,车能进屋,哎车真能进屋)所以责任重大,而大模型不具备边界清晰的控制,所以我们必须用规则库来做最后的底线。规则库在plc中还在应用,来实现精准控制机器生产产品,使合格率很高,正因为有清晰的边界,致使机器操作精准,虽然自动辅助驾驶用大模型可以更接近人类的操作,但大模型
- 传统预测学对于预测自然灾害与重大灾害可行性之辨
月_o9
python人机交互经验分享网络
传统预测学对于预测自然灾害与重大灾害可行性之辨人类自诞生起便始终面对自然狂暴力量的威胁。在科学尚未萌芽的漫长岁月里,我们的祖先仰观天文、俯察地理,试图从星象之变、地气之异乃至龟甲裂纹中寻找灾害降临的征兆——传统预测学由此萌芽。在中国,这体现为以天人感应为内核的星象占验与五行灾异之说;在西方,则表现为占星术对天体与人间祸福联系的执着解读。这些智慧结晶承载了先民对未知的敬畏与掌控命运的渴求。传统预测学
- 价值的罗盘:AI对齐与人类文明的终极追问
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)在文本生成、代码创作、多模态理解等领域展现出逼近甚至超越人类专家的惊人能力,当自主智能体(Agent)开始规划复杂目标、调用工具、影响现实世界,一个关乎人类文明存续的根本性问题,从未如此紧迫地摆在眼前:我们如何确保这些日益强大、甚至未来可能超越人类智慧的AI系统,其目标、行为和价值观始终与人类福祉深度契合?这便是AI对齐(AIAlignment)问题的核心。它并非单纯的技术
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
Allen_Lyb
数智读书笔记健康医疗人工智能笔记经验分享
探索医疗4.0:开启未来医疗新时代——读《未来医疗:医疗4.0引领第四次医疗产业变革》有感引言:医疗变革的浪潮在科技飞速发展的当下,我们正处在一个充满变革的时代,各行各业都在技术的驱动下发生着翻天覆地的变化,医疗行业也不例外。从听诊器、体温计到如今的基因检测、远程医疗,医疗技术的每一次进步都深刻地改变了人类的生活。而在众多探讨医疗未来趋势的著作中,《未来医疗:医疗4.0引领第四次医疗产业变革》犹如
- 【RAG文档解析优化】复杂Excel表格处理
kakaZhui
大模型实践之知识库RAGexcelAIGC人工智能AgentLLMRAG文档解析
1.引言:复杂ExcelExcel表格因其直观易用,在企业中被广泛用于制作财务报表、项目计划、销售跟踪、数据汇总等。为了人类阅读的便利性,制作者常常会使用合并单元格来创建标题、使用多层表头来组织复杂的列、在同一个Sheet页中放置多个相关的表格,并添加大量的注释说明。这些操作对于人类来说一目了然,但对于依赖程序化解析的RAG系统而言,却是一场噩梦。它们就像一朵朵“带刺的玫瑰”,虽然蕴含着宝贵的数据
- 了解并学会使用工具-数字化世界的重要一课
村中少年
Cyberchef从入门到精通教程cyberchef工具数据格式编码格式代码高亮正则时间转换
本文介绍一下一款百宝箱工具cyberchef,这款强大的开源软件值得每一位程序员,网络安全从业者,IT从业者,数字世界从业者去了解和学习。因为在我们工作学习过程中,会面临和诸多细小任务,这些小的任务都可以尝试用Cyberchef来解决。人类文明中的工具工具是推动人类文明进步的重要部分,每一次生产力的巨大提升无不伴随着工具的大规模使用,如下为人类历史上使用的重要工具:石器石器工具让早期人类能够更高效
- 深度解析生成式 AI:从技术原理到实战应用
LNL13
人工智能
一、生成式AI:重构数字内容生产范式(一)技术定义与核心价值生成式人工智能(GenerativeAI)是通过深度学习模型自动创造文本、图像、代码、视频等内容的技术体系,其核心在于从数据中学习概率分布并生成符合人类认知的输出。与传统判别式AI(如图像分类)不同,生成式AI实现了从"识别"到"创造"的跨越,典型应用包括:文本领域:ChatGPT对话系统、小说自动生成图像领域:MidJourney艺术创
- AI日报-20250703:DeepSeek-R2神秘现身?!游戏模型一句话生成GTA神作!
1、马斯克Grok4泄露!xAI融资700亿,目标“重写人类知识库”2、全球首款AI原生游戏引擎Mirage发布!一句话生成GTA级神作3、星流Agent震撼上线!专为中国设计师打造的全能AI创意助手4、DeepSeek-R2神秘现身!大模型竞技场惊现"steve"引全网热议5、OpenAI紧急切割Robinhood代币风波:虚假股权引发市场震荡6、OpenAI暂停谷歌TPU合作,英伟达AMD稳坐
- 基于Google Gemini 探索大语言模型在医学领域应用评估和前景
知来者逆
LLM语言模型搜索引擎人工智能Gemini大语言模型医疗健康医疗
概述近年来,大规模语言模型(LLM)在理解和生成人类语言方面取得了显著的飞跃,这些进步不仅推动了语言学和计算机编程的发展,还为多个领域带来了创新的突破。特别是模型如GPT-3和PaLM,它们通过吸收海量文本数据,已经能够掌握复杂的语言模式。人工智能技术的迅猛发展不断推动着LLM的进化,并加速了这一领域的专业创新。这些进步是随着模型规模的扩大、数据量的增加以及计算能力的提升而逐步实现的,其中许多尖端
- MinerU API 服务Docker一键部署(附源码)
码农垦荒笔记
docker容器运维
一、关于MinerU一站式、开源、高质量的数据提取工具,支持多种功能,如提取PDF、word、markdown等格式的内容。1.主要功能删除页眉、页脚、脚注、页码等元素,保持语义连贯对多栏输出符合人类阅读顺序的文本保留原文档的结构,包括标题、段落、列表等提取图像、图片标题、表格、表格标题自动识别文档中的公式并将公式转换成latex自动识别文档中的表格并将表格转换成latex乱码PDF自动检测并启用
- 研究方法 | 社会网络分析
大锤资源
学习经验分享
社会网络分析(SocialNetworkAnalysis,SNA)是一种研究社会结构的方法,它通过分析社会主体(如个人、组织、国家等)之间的关系网络,探讨这些关系对群体行为、互动和结构的影响。这种方法强调网络中节点(社会主体)和边(社会联系)之间的相互作用,揭示了人类社会交往中的复杂性和内在模式。01分析内容社会网络分析的核心内容包括:•节点与边:节点代表社会网络中的个体或实体,边则是连接这些节点
- 基于Python的智能语音识别系统设计
MATLAB算法工程师Y
python语音识别开发语言
引言语言是人类最原始直接的一种交流方式,通俗易懂、便于理解。随着科技的发展,语言交流不再只存在于人与人之间,如何让机器“听懂”人类的语言并做出反应成为人工智能的重要课题,语音智能交互技术应运而生。作为其中重要一环的语音识别技术近年来不断发展,走出了实验室,随着人工智能进入人们的日常生活中。当今市场上语音识别技术相关的软件、商品涉及人类生活的方方面面,语音识别的实用性已经得到充分的印证。如今语音识别
- Python 语音识别与语音合成的实现方法
加班不如去钓鱼
python语音识别xcode
```htmlPython语音识别与语音合成的实现方法Python语音识别与语音合成的实现方法随着人工智能技术的发展,语音处理在实际应用中变得越来越重要。Python作为一种功能强大的编程语言,提供了丰富的库和工具来实现语音识别和语音合成的功能。本文将详细介绍如何使用Python实现语音识别与语音合成。一、语音识别语音识别(SpeechRecognition)是将人类的语音转换为文本的过程。Pyt
- 论“人工智能生命体”站在那个高度?
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- AI人工智能代理工作流AI Agent WorkFlow:高并发场景下AI代理的性能调优
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:高并发场景下AI代理的性能调优关键词:AI代理,工作流,性能调优,高并发,分布式系统,资源管理,负载均衡1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,AI代理(AIAgents)在各个领域的应用越来越广泛。AI代理作为自动化、智能化的执行实体,能够模拟人类智能行为,完成复杂的任务。在高并发场景下,例如在线服务、金融服务、智能城市等,A
- 破译AI黑箱:如何用20行Python理解ChatGPT?
Ven%
简单入门pytorch人工智能pythonchatgpt
文章目录一、核心概念:大模型本质二、代码逐行解析(以线性回归为例)三、关键概念详解四、与大模型的本质联系五、大模型训练核心思想六、如何扩展成真实大模型七、总结:AI训练的本质一、核心概念:大模型本质大模型=复杂数学函数+数据驱动训练现实任务(如图像识别、语言翻译)过于复杂,人类无法直接编写数学函数解决。解决方案:构建参数化的数学模型(如神经网络)用大量数据训练,自动寻找最优参数得到能解决特定任务的
- c语言程序设计基础 教案,《c语言编程基础》电子教案
weixin_39906114
c语言程序设计基础教案
《c语言编程基础》电子教案宾县职业技术教育中心学校教导处制课题(内容)1.1C语言简史及特点课时1教学任务分析知识技能通过本节课的教学,使学生了解并熟悉编程语言C的发展历史、特点及其种类和适用范围。过程与方法通过C语言的发展,引出C语言的特点,从而激学生学好本门课程的兴趣。教学目标情感态度培养学生的动脑思考能力重点C语言的特点难点C语言的特点课前准备教具学具补充材料教材、教案笔记教学流程设计教师活
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- 类成员方法命名风格解析:动宾、纯动词与纯名词的选择之道
在软件开发的浩瀚代码海洋中,类成员方法的命名犹如指引开发者的灯塔,其重要性不言而喻。合理的命名不仅能让代码“自我言说”,降低理解成本,还能提升开发效率,促进团队协作。常见的类成员方法命名风格可归纳为动宾结构、纯动词和纯名词三类,每种风格都有其独特的设计逻辑与适用场景。一、动宾结构:最常见的“标准范式”动宾结构的命名方式,即“动词+宾语”,是最符合人类语言习惯的命名范式,也是软件开发中最常见的命名风
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- 【Python】edge-tts :便捷语音合成
宅男很神经
python开发语言
第一章:初识edge-tts——开启语音合成之旅1.1文本转语音(TTS)技术概述文本转语音(Text-to-Speech,TTS),顾名思义,是一种将输入的文本信息转换成可听的语音波形的技术。它是人机语音交互的关键组成部分,使得计算机能够像人一样“说话”。1.1.1TTS的发展简史与重要性TTS技术的研究可以追溯到上世纪中叶,早期的TTS系统通常基于参数合成或拼接合成的方法,声音机械、不自然。参
- 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
司南锤
LLM人工智能
引言在人工智能快速发展的今天,大语言模型(LLM)的推理能力一直是研究的热点。从最初的直接问答,到链式思维(ChainofThoughts,CoT)的出现,再到如今的思维树(TreeofThoughts,TOT),AI的推理方式正在变得越来越接近人类的思维过程。思维树作为一种全新的推理框架,不仅继承了链式思维的优势,更通过树状结构的探索和回溯机制,实现了更加复杂和深入的推理过程。本文将深入探讨TO
- 代码探秘人工智能
万能小贤哥
人工智能
当你在手机上用语音发送消息,当短视频平台精准推送你感兴趣的内容,当智能音箱陪你聊天解闷,背后都有一位“隐形伙伴”——人工智能。它就像从科幻电影中走出的神奇力量,正悄然改变着我们的生活。今天,就让我们借助简单的Python代码,开启一场探索人工智能奥秘的奇妙之旅!人工智能:计算机的“超能力大脑”想象一下,如果给计算机装上“大脑”,让它学会像人类一样思考、学习和解决问题,会发生什么?这就是人工智能(A
- 语言的钥匙:提示工程的艺术与驾驭AI的智慧
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)如GPT-4展现出令人惊叹的通用能力,却又伴随着“幻觉”、“黑箱”和“不可控”等阴影时,一个核心问题变得无比迫切:人类如何有效地与这些庞然大物沟通,引导它们可靠、安全、精准地完成任务?答案并非在于重新训练这头计算巨兽(成本高昂且周期漫长),而在于掌握一门新兴的关键技艺——提示工程(PromptEngineering)。提示工程,简而言之,就是精心设计输入给模型的自然语言指令
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc