elasticsearch 是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域
日志可视化:项目在运行时会产生海量的日志,日志可以方便我们定位BUG。而ELK可以将日志可视化进行展示,从而方便了找出BUG.
实时监控:项目运行过程中的状态也是数据,cup、内存、访问情况等等。
Lucene是一个JAVA语言的搜索引擎类库,是Apache公司的顶级项目,由1999年开发。官网地址https://lucene.apache.rog/
类库:就是一个jar包
Lucene的优势:
Lucene的缺点:
相比lucene,elasticsearch具备的优点是:
elasticsearch:开源的分布式搜索引擎
什么是正向索引:
基于文档id创建索引。查询词条时必须先找到文档,而后判断是否包含词条。
什么是倒排索引:
对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档。
倒排索引是基于传统数据库正向索引对比得出的:倒排索引。
例如:
mysql的正向索引:基于id创建索引,形成B+树,根据id进行检索的速度非常快。
如果是搜索的不是id,而是一个词语,一段话。如果正向搜索进行局部内容检索,通过模糊查询,效率很低。
ES的倒排索引:在创建的时候,会形成一个新的表格,有两个字段一个是词条,一个文档id。
文档(document):每条数据就是一个文档。
词条(term):文档按照语义分成的词语。【具有唯一性】
那么倒排文档在存储时,会先把文档内容分成词条进行存储。例如小米手机。分成:词条是:小米、手机。文档id:都是1
词条term字段是不会重复的,因为是唯一的,就可以创建索引,数据较少可以使用hash法,也可以使用B+树,为词条创建唯一索引。
例如搜索:华为手机。
第一步:会先将“华为手机”内容进行分词,从而得到“华为”和“手机”这样的词条。
第二步:拿着这两个词条,去倒排索引中,进行查询。
第三步:就能查到相应的词条所对应的文档id。在找出关联度最高的文档,进行排序。
第四步:根据文档id,查询文档。由于是拿着具体id来进行正向索引,索引可以快速得到文档了。
第五步:将结果,放到结果集当中。
一共经历了两次检索:
一次是根据词条去词条列表找文档id。
根据文档id找文档
索然是两次检索,但是每次都是根据索引进行查询。效率是非常的高。
例如:
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束.
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
//启动:
systemctl start docker
//检查是否启动成功:
docker -v
//查看docker的镜像:
docker images
//查看启动后的容器:
docker ps
//删除容器:
docker stop es
docker rm es
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。
建议将下载好的安装包.tar文件,将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据
docker load -i es.tar
同理还有kibana
的tar包也需要这样做。
运行docker命令,部署单点es:
docker run -d \
--name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v es-data:/usr/share/elasticsearch/data \
-v es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network es-net \
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.12.1
命令解释:
-e "cluster.name=es-docker-cluster"
:设置集群名称-e "http.host=0.0.0.0"
:监听的地址,可以外网访问-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小-e "discovery.type=single-node"
:非集群模式-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录--privileged
:授予逻辑卷访问权--network es-net
:加入一个名为es-net的网络中-p 9200:9200
:端口映射配置在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:
docker load -i kibana.tar
运行docker命令,部署kibana
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.12.1
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch-p 5601:5601
:端口映射配置此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
ES在创建倒排索引时,需要对文档内容进行分词。
搜索时,需要对内容输入,进行分词
# 进入容器内部
docker exec -it elasticsearch /bin/bash
# 在线下载并安装
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
#退出
exit
#重启容器
docker restart elasticsearch
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[
{
"CreatedAt": "2022-05-06T10:06:34+08:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
"Name": "es-plugins",
"Options": null,
"Scope": "local"
}
]
说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data
这个目录中。
下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
也就是/var/lib/docker/volumes/es-plugins/_data
:
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
IK分词器包含两种模式:
ik_smart
:最少切分
ik_max_word
:最细切分
GET /_analyze
{
"analyzer": "ik_max_word",
"text": "黑马程序员学习java太棒了"
}
结果:
{
"tokens" : [
{
"token" : "黑马",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "程序员",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "程序",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "员",
"start_offset" : 4,
"end_offset" : 5,
"type" : "CN_CHAR",
"position" : 3
},
{
"token" : "学习",
"start_offset" : 5,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "java",
"start_offset" : 7,
"end_offset" : 11,
"type" : "ENGLISH",
"position" : 5
},
{
"token" : "太棒了",
"start_offset" : 11,
"end_offset" : 14,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "太棒",
"start_offset" : 11,
"end_offset" : 13,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "了",
"start_offset" : 13,
"end_offset" : 14,
"type" : "CN_CHAR",
"position" : 8
}
]
}
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
2)在IKAnalyzer.cfg.xml配置文件内容添加:
DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置comment>
<entry key="ext_dict">ext.dicentry>
<entry key="ext_stopwords">stopword.dicentry>
properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
传智播客
奥力给
4)重启elasticsearch
docker restart es
# 查看 日志
docker logs -f elasticsearch
分词器的作用是什么?
IK分词器有几种模式?
IK分词器如何拓展词条?如何停用词条?
索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。
mapping是对索引库中文档的约束,常见的mapping属性包括:
例如下面的json文档:
{
"age": 21,
"weight": 52.1,
"isMarried": false,
"info": "黑马程序员Java讲师",
"email": "[email protected]",
"score": [99.1, 99.5, 98.9],
"name": {
"firstName": "云",
"lastName": "赵"
}
}
对应的每个字段映射(mapping):
这里我们统一使用Kibana编写DSL的方式来演示。
格式:
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
// ...略
}
}
}
PUT /heima
{
"mappings": {
"properties": {
"info":{
"type": "text",
"analyzer": "ik_smart"
},
"email":{
"type": "keyword",
"index": "falsae"
},
"name":{
"properties": {
"firstName": {
"type": "keyword"
}
}
},
// ... 略
}
}
}
基本语法:
请求方式:GET
请求路径:/索引库名
请求参数:无
格式:
GET /索引库名
示例:
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
示例:
语法:
请求方式:DELETE
请求路径:/索引库名
请求参数:无
格式:
DELETE /索引库名
索引库操作有哪些?
语法:
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
// ...
}
示例:
POST /heima/_doc/1
{
"info": "黑马程序员Java讲师",
"email": "[email protected]",
"name": {
"firstName": "云",
"lastName": "赵"
}
}
响应:
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id}
通过kibana查看数据:
GET /heima/_doc/1
查看结果:
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
示例:
# 根据id删除数据
DELETE /heima/_doc/1
结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/3726859ea41e43f388633f33d6b88d9e.png)
修改有两种方式:
全量修改是覆盖原来的文档,其本质是:
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
// ... 略
}
示例:
PUT /heima/_doc/1
{
"info": "黑马程序员高级Java讲师",
"email": "[email protected]",
"name": {
"firstName": "云",
"lastName": "赵"
}
}
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
示例:
POST /heima/_update/1
{
"doc": {
"email": "[email protected]"
}
}
文档操作有哪些?