详解 Kaggle 房价预测竞赛优胜方案:用 Python 进行全面数据探索

Kaggle 的房价预测竞赛从 2016 年 8 月开始,到 2017 年 2 月结束。这段时间内,超过 2000 多人参与比赛,选手采用高级回归技术,基于我们给出的 79 个特征,对房屋的售价进行了准确的预测。今天我们介绍的是目前得票数最高的优胜方案:《用 Python 进行全面数据探索》,该方案在数据探索,特征工程上都有十分出色的表现。


作者 Pedro Marcelino 在竞赛中使用的主要方法是关注数据科学处理方法,以及寻找能够指导工作的有力文献资料。作者主要参考《多元数据分析》(Multivariate Data Analysis, Hair et al., 2014)中的第三章 “检查你的数据”。作者将自己研究的方法归为以下三步:

  1. 定义要解决的问题;

  2. 查阅相关文献;

  3. 对他们进行修改以适合自己的要求。


**“不过是站在巨人的肩膀上。”—— Pedro Marcelino **

下面我们就一起来看看作者是如何对数据进行分析的。


了解你的数据

方法框架:

  • 理解问题:查看每个变量并且根据他们的意义和对问题的重要性进行哲学分析。
  • 单因素研究:只关注因变量( SalePrice),并且进行更深入的了解。
  • 多因素研究:分析因变量和自变量之间的关系。
  • 基础清洗:清洗数据集并且对缺失数据,异常值和分类数据进行一些处理。
  • 检验假设:检查数据是否和多元分析方法的假设达到一致。

开始之前:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as npfrom scipy.stats
import normfrom sklearn.preprocessing
import StandardScalerfrom scipy
import stats
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

#bring in the six packs
df_train = pd.read_csv('../input/train.csv')
#check the decoration
df_train.columns

Index(['Id', 'MSSubClass', 'MSZoning','LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities','LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1','Condition2', 'BldgType',
       'HouseStyle', 'OverallQual', 'OverallCond','YearBuilt', 'YearRemodAdd',
       'RoofStyle', 'RoofMatl', 'Exterior1st','Exterior2nd', 'MasVnrType',
       'MasVnrArea', 'ExterQual', 'ExterCond','Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinType1','BsmtFinSF1',
       'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'Heating',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF','2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath','BsmtHalfBath', 'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr','KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces','FireplaceQu', 'GarageType',
       'GarageYrBlt', 'GarageFinish', 'GarageCars','GarageArea', 'GarageQual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF','OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch','PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold','YrSold', 'SaleType',
       'SaleCondition', 'SalePrice'],
      dtype='object')
      

准备工作——我们可以期望什么?


为了了解我们的数据,我们可以分析每个变量并且尝试理解他们的意义和与该问题的相关程度。


首先建立一个 Excel 电子表格,有如下目录:

  • 变量 – 变量名。
  • 类型 – 该变量的类型。这一栏只有两个可能值,“数据” 或 “类别”。 “数据” 是指该变量的值是数字,“类别” 指该变量的值是类别标签。
  • 划分 – 指示变量划分. 我们定义了三种划分:建筑,空间,位置。
  • 期望 – 我们希望该变量对房价的影响程度。我们使用类别标签 “高”,“中” 和 “低” 作为可能值。
  • 结论 – 我们得出的该变量的重要性的结论。在大概浏览数据之后,我们认为这一栏和 “期望” 的值基本一致。
  • 评论 – 我们看到的所有一般性评论。

我们首先阅读了每一个变量的描述文件,同时思考这三个问题:

  • 我们买房子的时候会考虑这个因素吗?
  • 如果考虑的话,这个因素的重要程度如何?
  • 这个因素带来的信息在其他因素中出现过吗?

我们根据以上内容填好了电子表格,并且仔细观察了 “高期望” 的变量。然后绘制了这些变量和房价之间的散点图,填在了 “结论” 那一栏,也正巧就是对我们的期望值的校正。


我们总结出了四个对该问题起到至关重要的作用的变量:

  • OverallQual
  • YearBuilt.
  • TotalBsmtSF.
  • GrLivArea.

最重要的事情——分析 “房价”

描述性数据总结:

df_train['SalePrice'].describe()

count      1460.000000
mean     180921.195890
std       79442.502883
min       34900.000000
25%      129975.000000
50%      163000.000000
75%      214000.000000
max      755000.000000
Name: SalePrice, dtype: float64

绘制直方图

sns.distplot(df_train['SalePrice']);

从直方图中可以看出:

  • 偏离正态分布
  • 数据正偏
  • 有峰值

数据偏度和峰度度量:

print("Skewness: %f" % df_train['SalePrice'].skew())
print("Kurtosis: %f" % df_train['SalePrice'].kurt())

Skewness: 1.882876

Kurtosis: 6.536282


“房价” 的相关变量分析
与数字型变量的关系:


1.Grlivarea 与 SalePrice 散点图

var = 'GrLivArea'
data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)
data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));


可以看出 SalePrice 和 GrLivArea 关系很密切,并且基本呈线性关系。


2.TotalBsmtSF 与 SalePrice 散点图

var = 'TotalBsmtSF'
data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)
data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));


TotalBsmtSF 和 SalePrice 关系也很密切,从图中可以看出基本呈指数分布,但从最左侧的点可以看出特定情况下 TotalBsmtSF 对 SalePrice 没有产生影响。


与类别型变量的关系

1.‘OverallQual’与‘SalePrice’箱型图

var = 'OverallQual'
data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)
f, ax = plt.subplots(figsize=(8, 6))
fig = sns.boxplot(x=var, y="SalePrice", data=data)
fig.axis(ymin=0, ymax=800000);


可以看出 SalePrice 与 OverallQual 分布趋势相同。


2.YearBuilt 与 SalePrice 箱型图

var = 'YearBuilt'
data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)
f, ax = plt.subplots(figsize=(16, 8))
fig = sns.boxplot(x=var, y="SalePrice", data=data)
fig.axis(ymin=0, ymax=800000);plt.xticks(rotation=90);


两个变量之间的关系没有很强的趋势性,但是可以看出建筑时间较短的房屋价格更高。


总结:

  • GrLivArea 和 TotalBsmtSF 与 SalePrice 似乎线性相关,并且都是正相关。 对于 TotalBsmtSF 线性关系的斜率十分的高。
  • OverallQual 和 YearBuilt 与 SalePrice 也有关系。OverallQual 的相关性更强, 箱型图显示了随着整体质量的增长,房价的增长趋势。

OverallQual 和 YearBuilt 与 SalePrice 也有关系。OverallQual 的相关性更强, 箱型图显示了随着整体质量的增长,房价的增长趋势。


客观分析

1.相关系数矩阵

corrmat = df_train.corr()
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True);


首先两个红色的方块吸引到了我,第一个是 TotalBsmtSF 和 1stFlrSF 变量的相关系数,第二个是 GarageX 变量群。这两个示例都显示了这些变量之间很强的相关性。实际上,相关性的程度达到了一种多重共线性的情况。我们可以总结出这些变量几乎包含相同的信息,所以确实出现了多重共线性。


另一个引起注意的地方是 SalePrice 的相关性。我们可以看到我们之前分析的 GrLivArea,TotalBsmtSF和 OverallQual 的相关性很强,除此之外也有很多其他的变量应该进行考虑,这也是我们下一步的内容。


2.SalePrice 相关系数矩阵

k = 10 #number ofvariables for heatmap
cols = corrmat.nlargest(k, 'SalePrice')['SalePrice'].index
cm = np.corrcoef(df_train[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, 
yticklabels=cols.values, xticklabels=cols.values)
plt.show()


从图中可以看出:

  • OverallQual,GrLivArea 以及 TotalBsmtSF 与 SalePrice 有很强的相关性。
  • GarageCars 和 GarageArea 也是相关性比较强的变量. 车库中存储的车的数量是由车库的面积决定的,它们就像双胞胎,所以不需要专门区分 GarageCars 和 GarageAre,所以我们只需要其中的一个变量。这里我们选择了 GarageCars,因为它与 SalePrice 的相关性更高一些。
  • TotalBsmtSF 和 1stFloor 与上述情况相同,我们选择 TotalBsmtS 。
  • FullBath 几乎不需要考虑。
  • TotRmsAbvGrd 和 GrLivArea 也是变量中的双胞胎。
  • YearBuilt 和 SalePrice 相关性似乎不强。

3.SalePrice 和相关变量之间的散点图

sns.set()
cols = ['SalePrice', 'OverallQual', 'GrLivArea','GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']
sns.pairplot(df_train[cols], size = 2.5)
plt.show();


尽管我们已经知道了一些主要特征,这一丰富的散点图给了我们一个关于变量关系的合理想法。


其中,TotalBsmtSF 和 GrLiveArea 之间的散点图是很有意思的。我们可以看出这幅图中,一些点组成了线,就像边界一样。大部分点都分布在那条线下面,这也是可以解释的。地下室面积和地上居住面积可以相等,但是一般情况下不会希望有一个比地上居住面积还大的地下室。


SalePrice 和 YearBuilt 之间的散点图也值得我们思考。在 “点云” 的底部,我们可以观察到一个几乎呈指数函数的分布。我们也可以看到 “点云” 的上端也基本呈同样的分布趋势。并且可以注意到,近几年的点有超过这个上端的趋势。


缺失数据

关于缺失数据需要思考的重要问题:

  • 这一缺失数据的普遍性如何?
  • 缺失数据是随机的还是有律可循?

这些问题的答案是很重要的,因为缺失数据意味着样本大小的缩减,这会阻止我们的分析进程。除此之外,以实质性的角度来说,我们需要保证对缺失数据的处理不会出现偏离或隐藏任何难以忽视的真相。

total= df_train.isnull().sum().sort_values(ascending=False)
percent = (df_train.isnull().sum()/df_train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total','Percent'])
missing_data.head(20)


当超过 15% 的数据都缺失的时候,我们应该删掉相关变量且假设该变量并不存在。


根据这一条,一系列变量都应该删掉,例如 PoolQC,MiscFeature,Alley 等等,这些变量都不是很重要,因为他们基本都不是我们买房子时会考虑的因素。GarageX 变量群的缺失数据量都相同,由于关于车库的最重要的信息都可以由 GarageCars 表达,并且这些数据只占缺失数据的 5%,我们也会删除上述的 GarageX 变量群。同样的逻辑也适用于 BsmtX 变量群。


对于 MasVnrArea 和 MasVnrType,我们可以认为这些因素并不重要。除此之外,他们和 YearBuilt 以及 OverallQual 都有很强的关联性,而这两个变量我们已经考虑过了。所以删除 MasVnrArea 和 MasVnrType 并不会丢失信息。最后,由于 Electrical 中只有一个损失的观察值,所以我们删除这个观察值,但是保留这一变量。

df_train= df_train.drop((missing_data[missing_data['Total'] > 1]).index,1)
df_train= df_train.drop(df_train.loc[df_train['Electrical'].isnull()].index)
df_train.isnull().sum().max() #justchecking that there's no missing data missing...

异常值

单因素分析

这里的关键在于如何建立阈值,定义一个观察值为异常值。我们对数据进行正态化,意味着把数据值转换成均值为 0,方差为 1 的数据。

saleprice_scaled= StandardScaler().fit_transform(df_train['SalePrice'][:,np.newaxis]);
low_range = saleprice_scaled[saleprice_scaled[:,0].argsort()][:10]
high_range= saleprice_scaled[saleprice_scaled[:,0].argsort()][-10:]
print('outer range (low) of the distribution:')
print(low_range)
print('\nouter range (high) of thedistribution:')
print(high_range)

进行正态化后,可以看出:

  • 低范围的值都比较相似并且在 0 附近分布。
  • 高范围的值离 0 很远,并且七点几的值远在正常范围之外。

双变量分析

1.GrLivArea 和 SalePrice 双变量分析

var = 'GrLivArea'
data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1)
data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000));


从图中可以看出:

  • 有两个离群的 GrLivArea 值很高的数据,我们可以推测出现这种情况的原因。或许他们代表了农业地区,也就解释了低价。 这两个点很明显不能代表典型样例,所以我们将它们定义为异常值并删除。
  • 图中顶部的两个点是七点几的观测值,他们虽然看起来像特殊情况,但是他们依然符合整体趋势,所以我们将其保留下来。

删除点

df_train.sort_values(by = 'GrLivArea',ascending = False)[:2]
df_train = df_train.drop(df_train[df_train['Id'] == 1299].index)
df_train = df_train.drop(df_train[df_train['Id'] == 524].index)

2.TotalBsmtSF 和 SalePrice 双变量分析

var = 'TotalBsmtSF'
data = pd.concat([df_train['SalePrice'],df_train[var]], axis=1)
data.plot.scatter(x=var, y='SalePrice',ylim=(0,800000));


核心部分

“房价” 到底是谁?

这个问题的答案,需要我们验证根据数据基础进行多元分析的假设。我们已经进行了数据清洗,并且发现了 SalePrice 的很多信息,现在我们要更进一步理解 SalePrice 如何遵循统计假设,可以让我们应用多元技术。


应该测量 4 个假设量:

  • 正态性
  • 同方差性
  • 线性
  • 相关错误缺失

正态性:
应主要关注以下两点:

  • 直方图 – 峰度和偏度。
  • 正态概率图 – 数据分布应紧密跟随代表正态分布的对角线。

1.SalePrice

绘制直方图和正态概率图:

sns.distplot(df_train['SalePrice'], fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['SalePrice'], plot=plt)



可以看出,房价分布不是正态的,显示了峰值,正偏度,但是并不跟随对角线。

可以用对数变换来解决这个问题


进行对数变换:

df_train['SalePrice']= np.log(df_train['SalePrice'])

绘制变换后的直方图和正态概率图:

sns.distplot(df_train['SalePrice'], fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['SalePrice'], plot=plt)

2.GrLivArea

绘制直方图和正态概率曲线图:

sns.distplot(df_train['GrLivArea'], fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['GrLivArea'], plot=plt)


进行对数变换:

df_train['GrLivArea']= np.log(df_train['GrLivArea'])

绘制变换后的直方图和正态概率图:

sns.distplot(df_train['GrLivArea'], fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['GrLivArea'], plot=plt)


3.TotalBsmtSF

绘制直方图和正态概率曲线图:

sns.distplot(df_train['TotalBsmtSF'],fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['TotalBsmtSF'],plot=plt)


从图中可以看出:

  • 显示出了偏度
  • 大量为 0 的观察值(没有地下室的房屋)
  • 含 0 的数据无法进行对数变换

我们建立了一个变量,可以得到有没有地下室的影响值(二值变量),我们选择忽略零值,只对非零值进行对数变换。这样我们既可以变换数据,也不会损失有没有地下室的影响。

df_train['HasBsmt']= pd.Series(len(df_train['TotalBsmtSF']), index=df_train.index)
df_train['HasBsmt'] = 0 
df_train.loc[df_train['TotalBsmtSF']>0,'HasBsmt'] = 1

进行对数变换:

df_train['TotalBsmtSF']= np.log(df_train['TotalBsmtSF'])

绘制变换后的直方图和正态概率图:

sns.distplot(df_train['TotalBsmtSF'], fit=norm);
fig = plt.figure()
res = stats.probplot(df_train['TotalBsmtSF'], plot=plt)


同方差性:

最好的测量两个变量的同方差性的方法就是图像。


1.SalePrice 和 GrLivArea 同方差性

绘制散点图:

plt.scatter(df_train['GrLivArea'],df_train['SalePrice']);


2.SalePrice with TotalBsmtSF 同方差性

绘制散点图:

plt.scatter(df_train[df_train['TotalBsmtSF']>0]
['TotalBsmtSF'], df_train[df_train['TotalBsmtSF']>0]['SalePrice']);


可以看出 SalePrice 在整个 TotalBsmtSF 变量范围内显示出了同等级别的变化。


虚拟变量

将类别变量转换为虚拟变量:

df_train = pd.get_dummies(df_train)

结论

整个方案中,我们使用了很多《多元数据分析》中提出的方法。我们对变量进行了哲学分析,不仅对 SalePrice 进行了单独分析,还结合了相关程度最高的变量进行分析。我们处理了缺失数据和异常值,我们验证了一些基础统计假设,并且将类别变量转换为虚拟变量。


但问题还没有结束,我们还需要预测房价的变化趋势,房价预测是否适合线性回归正则化的方法?是否适合组合方法?或者一些其他的方法?希望你可以进行自己的探索发现。

阅读原文

你可能感兴趣的:(Python,Python,数据探索,房价预测,Kaggle)