基于神经网络的图像分类,图像识别神经网络模型

基于神经网络的图像分类,图像识别神经网络模型_第1张图片

有哪些深度神经网络模型?

目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。

递归神经网络实际.上包含了两种神经网络。

一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构递归形成更加复杂的深度网络。

RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

谷歌人工智能写作项目:爱发猫

有哪些深度神经网络模型

目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等写作猫

递归神经网络实际.上包含了两种神经网络。

一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构递归形成更加复杂的深度网络。

RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。

神经网络BP模型

一、BP模型概述误差逆传播(ErrorBack-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

PallWerbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。

他们在1986年出版“ParallelDistributedProcessing,ExplorationsintheMicrostructureofCognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。

在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。

随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;3)分类:把输入模式以所定义的合适方式进行分类;4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义P对学习模式(xp,dp),p=1,2,…,P;输入模式矩阵X[N][P]=(x1,x2,…,xP);目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构输入层神经元节点数S0=N,i=1,2,…,S0;隐含层神经元节点数S1,j=1,2,…,S1;神经元激活函数f1[S1];权值矩阵W1[S1][S0];偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;神经元激活函数f2[S2];权值矩阵W2[S2][S1];偏差向量b2[S2]。

学习参数目标误差ϵ;初始权更新值Δ0;最大权更新值Δmax;权更新值增大倍数η+;权更新值减小倍数η-。

2.误差函数定义对第p个输入模式的误差的计算公式为中国矿产资源评价新技术与评价新模型y2kp为BP网的计算输出。

3.BP网络学习公式推导BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式输入层y0i=xi,i=1,2,…,S0;隐含层中国矿产资源评价新技术与评价新模型y1j=f1(z1j),j=1,2,…,S1;输出层中国矿产资源评价新技术与评价新模型y2k=f2(z2k),k=1,2,…,S2。

输出节点的误差公式中国矿产资源评价新技术与评价新模型对输出层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设输出层节点误差为δ2k=(dk-y2k)·f2′(z2k),则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型对隐含层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。

因此,上式只存在对k的求和,其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设隐含层节点误差为中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb1993年德国MartinRiedmiller和HeinrichBraun在他们的论文“ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROPAlgorithm”中,提出ResilientBackpropagation算法——弹性BP算法(RPROP)。

这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”确定中国矿产资源评价新技术与评价新模型其中表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。中国矿产资源评价新技术与评价新模型RPROP算法是根据局部梯度信息实现权步的直接修改。

对于每个权,我们引入它的各自的更新值,它独自确定权更新值的大小。

这是基于符号相关的自适应过程,它基于在误差函数E上的局部梯度信息,按照以下的学习规则更新中国矿产资源评价新技术与评价新模型其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值η+=1.2,η-=0.5,这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为Δmax=50.0。在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如Δmax=1.0。

我们可能达到误差减小的平滑性能。5.计算修正权值W、偏差b第t次学习,权值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和中国矿产资源评价新技术与评价新模型每次学习平均误差中国矿产资源评价新技术与评价新模型当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f线性函数f(x)=x,f′(x)=1,f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。一般用于输出层,可使网络输出任何值。

S型函数S(x)中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的输入范围(-∞,+∞),输出范围(0,]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。双曲正切S型函数中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{0,1}。f′(x)=0。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{-1,1}。f′(x)=0。

斜坡函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[0,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[-1,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵Xmax[N],Xmin[N];(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f()都是双曲正切S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f()都是S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f()为其他函数的情形1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,P;三层BP网络结构;学习参数。

(2)学习初始化1);2)各层W,b的梯度值,初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE(4)进入学习循环epoch=1(5)判断每次学习误差是否达到目标误差要求如果MSE<ϵ,则,跳出epoch循环,转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值,(7)求第epoch次学习各层W,b的梯度值,1)求各层误差反向传播值δ;2)求第p次各层W,b的梯度值,;3)求p=1,2,…,P次模式产生的W,b的梯度值,的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值,设为第epoch次学习产生的各层W,b的梯度值,。

(9)求各层W,b的更新1)求权更新值Δij更新;2)求W,b的权更新值,;3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,转到(5);否则,转到(12)。

(12)输出处理1)如果MSE<ε,则学习达到目标误差要求,输出W1,b1,W2,b2。2)如果MSE≥ε,则学习没有达到目标误差要求,再次学习。

(13)结束3.三层BP网络(含输入层,隐含层,输出层)预测总体算法首先应用Train3lBP_RPROP()学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP()。1)输入参数:P个需预测的输入数据向量xp,p=1,2,…,P;三层BP网络结构;学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出y2[S2][P],输出预测结果y2[S2][P]。四、总体算法流程图BP网络总体算法流程图见附图2。

五、数据流图BP网数据流图见附图1。

六、实例实例一全国铜矿化探异常数据BP模型分类1.全国铜矿化探异常数据准备在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。

这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。3.测试数据准备全国化探数据作为测试数据集。

4.BP网络结构隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。表8-1模型数据表续表5.计算结果图如图8-2、图8-3。

图8-2图8-3全国铜矿矿床类型BP模型分类示意图实例二全国金矿矿石量品位数据BP模型分类1.模型数据准备根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。3.BP网络结构输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2模型数据4.计算结果结果见表8-3、8-4。表8-3训练学习结果表8-4预测结果(部分)续表。

哪些神经网络可以用在图像特征提取上

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。

1.BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。

它保证了向局部极小的收敛,但收敛到错误的局部极小值(localminimum),而非全局极小(globalminimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。

3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。

隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。

隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。

当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。

与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

unet模型属于哪种神经网络

unet模型属于卷积神经网络。

是德国弗莱堡大学计算机科学系为生物医学图像分割而开发的,该网络基于全卷积网络其架构经过修改和扩展,可以使用更少的训练图像并产生更精确的分割,Unet是2015年诞生的模型。

unet模型的特点Unet是比较早的基于深度学习的分割算法了,优点是速度真的快P100上基于VGG的backbone能跑到50帧,同时不是太开放的场景下可以做到令人满意的分割效果,在对实时性要求较高的场合下是比较适用的不是所有的场合都能上MaskRCNN的Backbone大一点。

如果显卡差点就容易爆显存了,同时相比大分割网络的模型动辄几百Mb,Unet用小backbone模型就可以做到10Mb内,Conv层通道减少一点再把网络模型参数分开,模型大小可以做到很小,用CPU跑速度都挺快的,关键是分割精度在较为简单场景下还可以。

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP神经网络BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。

backpropagation就是指的为非线性多层网络计算梯度的方法。一个典型的BP网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k个模式对,输出层单元的j的加权输入为该单元的实际输出为而隐含层单元i的加权输入为该单元的实际输出为函数f为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a.计算同一层单元的误差;b.修正权值和阈值;c.返回(2)二、BP网络隐层个数的选择对于含有一个隐层的三层BP网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9这十个数字的BMP格式的目标图像。图像大小为16×8像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP网络,输入层神经元个数等于样本图像的象素个数16×8个。隐含层选24个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10个模式,所以输出层神经元选择10个,10个神经元与10个模式一一对应。

3、基于MATLAB语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata为训练样本矩阵,大小为128×40,targets为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1S2…SN],{TF1TF2…TFN},BTF,BLF,PF)为MATLAB函数库中建立一个N层前向BP网络的函数,函数的自变量PR表示网络输入矢量取值范围的矩阵[Pminmax];S1~SN为各层神经元的个数;TF1~TFN用于指定各层神经元的传递函数;BTF用于指定网络的训练函数;BLF用于指定权值和阀值的学习函数;PF用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B为测试样本向量集,128×20的点阵。

D为网络对训练样本的识别结果,A为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

matlab BP神经网络模型 30

'小女子!'要看你漂不漂亮呀!呵呵我倒是愿意帮你,但你的问题说的太模糊!譬如说你的图像是什么格式的?怎么会有12种属性?就算ETM遥感也只有7个波段(属性)呀!

每张图片有12张属性,那么他对应什么样的结果(期望输出)是什么?图片有多大,做图像处理可相当花时间哦!所以建议你把原来问题发出来,别人才方便帮你。

但是BP神经网络入门很容易,网上有代码,可以下载下来看懂了再做!

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

你可能感兴趣的:(神经网络,分类,深度学习,rnn)