2020-10-06 车道线检测项目及相关学习经验

车道线检测项目的本质是一个边缘检测的算法的延伸。

在汽车正常行驶过程中,车道线往往出于车体视野的中心对称位置,其位置相对固定。

下图展示了一个该场景,随着车辆的移动,车道线基本处于该黑色虚线所包围的区域内。

2020-10-06 车道线检测项目及相关学习经验_第1张图片

因此,使用边缘检测时,如果我们仅对该ROI区域进行计算,将有利于降低干扰,减少计算量。

之后检测直线时,使用的是霍夫变换,但ROI区域内的边缘直线信息比较多,例如上图右侧白色线是间断的直线。

考虑到道路中直线只有左右两条,他们的特点是,一条直线的斜率为正,一条直线的斜率为负,且正负斜率直线的值基本相同。

因此,我们将直线分为两组,每组再通过均值或者最小二乘法确定唯一一条直线,即可完成轨迹线的检测。

总结所有的步骤如下:

  1. 灰度化
  2. 高斯模糊
  3. Canny边缘检测
  4. 不规则ROI区域截取
  5. 霍夫直线检测
  6. 车道计算
     

1 图像预处理¶

灰度化和滤波操作是大部分图像处理的必要步骤。灰度化不必多说,因为不是基于色彩信息识别的任务,所以没有必要用彩色图,可以大大减少计算量。而滤波会削弱图像噪点,排除干扰信息。另外,根据前面学习的知识,边缘提取是基于图像梯度的,梯度对噪声很敏感,所以平滑滤波操作必不可少。

# 高斯滤波核大小
blur_ksize = 5
# Canny边缘检测高低阈值
canny_lth = 50
canny_hth = 150

# 1. 灰度化、滤波和Canny
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 1)

2020-10-06 车道线检测项目及相关学习经验_第2张图片

edges = cv2.Canny(blur_gray, canny_lth, canny_hth)

2020-10-06 车道线检测项目及相关学习经验_第3张图片

2 ROI截取¶

按照前面描述的方案,只需保留边缘图中的红线部分区域用于后续的霍夫直线检测,其余都是无用的信息:

2020-10-06 车道线检测项目及相关学习经验_第4张图片

如何实现呢?我们可以创建一个梯形的mask掩膜,然后与边缘检测结果图混合运算,掩膜中白色的部分保留,黑色的部分舍弃。梯形的四个坐标需要手动标记:

def roi_mask(img, corner_points):
    # 创建掩膜
    mask = np.zeros_like(img)
    cv2.fillPoly(mask, corner_points, 255)

    masked_img = cv2.bitwise_and(img, mask)
    return masked_img

# 2. 标记四个坐标点用于ROI截取
rows, cols = edges.shape
points = np.array([[(0, rows), (460, 325), (520, 325), (cols, rows)]])
roi_edges = roi_mask(edges, points)

2020-10-06 车道线检测项目及相关学习经验_第5张图片

 

3 霍夫直线提取¶

为了方便后续计算直线的斜率,我们使用统计概率霍夫直线变换(因为它能直接得到直线的起点和终点坐标)。霍夫变换的参数比较多,可以放在代码开头,便于修改:

# 霍夫变换参数
rho = 1
theta = np.pi / 180
threshold = 15
min_line_len = 40
max_line_gap = 20

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    # 统计概率霍夫直线变换
    lines = cv2.HoughLinesP(img, rho, theta, threshold, minLineLength=min_line_len, maxLineGap=max_line_gap)
    # 新建一副空白画布
    drawing = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    draw_lines(drawing, lines)     # 画出直线检测结果
    return drawing, lines

def draw_lines(img, lines, color=[0, 0, 255], thickness=1):
    for line in lines:
        for x1, y1, x2, y2 in line:
            cv2.line(img, (x1, y1), (x2, y2), color, thickness)

# 3. 霍夫直线提取
drawing, lines = hough_lines(roi_edges, rho, theta, threshold, min_line_len, max_line_gap)

2020-10-06 车道线检测项目及相关学习经验_第6张图片

4 车道计算¶

这部分应该算是本次挑战任务的核心内容了:前面通过霍夫变换得到了多条直线的起点和终点,我们的目的是通过某种算法只得到左右两条车道线。

第一步、根据斜率正负划分某条线是左车道还是右车道。

Image Name

经验之谈:再次强调,斜率计算是在图像坐标系下,所以斜率正负/左右跟平面坐标有区别。

第二步、迭代计算各直线斜率与斜率均值的差,排除掉差值过大的异常数据。
注意这里迭代的含义,意思是第一次计算完斜率均值并排除掉异常值后,再在剩余的斜率中取均值,继续排除……这样迭代下去。

第三步、最小二乘法拟合左右车道线。
经过第二步的筛选,就只剩下可能的左右车道线了,这样只需从多条直线中拟合出一条就行。拟合方法有很多种,最常用的便是最小二乘法,它通过最小化误差的平方和来寻找数据的最佳匹配函数。

具体来说,假设目前可能的左车道线有6条,也就是12个坐标点,包括12个x和12个y,我们的目的是拟合出这样一条直线:

Image Name

使得误差平方和最小:

Image Name

Python中可以直接使用np.polyfit()进行最小二乘法拟合。

def draw_lanes(img, lines, color=[255, 0, 0], thickness=8):
    # a. 划分左右车道
    left_lines, right_lines = [], []
    for line in lines:
        for x1, y1, x2, y2 in line:
            k = (y2 - y1) / (x2 - x1)
            if k < 0:
                left_lines.append(line)
            else:
                right_lines.append(line)

    if (len(left_lines) <= 0 or len(right_lines) <= 0):
        return

    # b. 清理异常数据
    clean_lines(left_lines, 0.1)
    clean_lines(right_lines, 0.1)

    # c. 得到左右车道线点的集合,拟合直线
    left_points = [(x1, y1) for line in left_lines for x1, y1, x2, y2 in line]
    left_points = left_points + [(x2, y2) for line in left_lines for x1, y1, x2, y2 in line]
    right_points = [(x1, y1) for line in right_lines for x1, y1, x2, y2 in line]
    right_points = right_points + [(x2, y2) for line in right_lines for x1, y1, x2, y2 in line]

    left_results = least_squares_fit(left_points, 325, img.shape[0])
    right_results = least_squares_fit(right_points, 325, img.shape[0])

    # 注意这里点的顺序
    vtxs = np.array([[left_results[1], left_results[0], right_results[0], right_results[1]]])
    # d. 填充车道区域
    cv2.fillPoly(img, vtxs, (0, 255, 0))

    # 或者只画车道线
    # cv2.line(img, left_results[0], left_results[1], (0, 255, 0), thickness)
    # cv2.line(img, right_results[0], right_results[1], (0, 255, 0), thickness)

def clean_lines(lines, threshold):
    # 迭代计算斜率均值,排除掉与差值差异较大的数据
    slope = [(y2 - y1) / (x2 - x1) for line in lines for x1, y1, x2, y2 in line]
    while len(lines) > 0:
        mean = np.mean(slope)
        diff = [abs(s - mean) for s in slope]
        idx = np.argmax(diff)
        if diff[idx] > threshold:
            slope.pop(idx)
            lines.pop(idx)
        else:
            break

def least_squares_fit(point_list, ymin, ymax):
    # 最小二乘法拟合
    x = [p[0] for p in point_list]
    y = [p[1] for p in point_list]

    # polyfit第三个参数为拟合多项式的阶数,所以1代表线性
    fit = np.polyfit(y, x, 1)
    fit_fn = np.poly1d(fit)  # 获取拟合的结果

    xmin = int(fit_fn(ymin))
    xmax = int(fit_fn(ymax))

    return [(xmin, ymin), (xmax, ymax)]

# 5. 最终将结果合在原图上
result = cv2.addWeighted(img, 0.9, drawing, 0.2, 0)

2020-10-06 车道线检测项目及相关学习经验_第7张图片

你可能感兴趣的:(study)