- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- 深度学习速通系列:梯度消失vs梯度爆炸
Ven%
深度学习速通系列人工智能深度学习python
梯度消失和梯度爆炸是深度学习中训练深层神经网络时常见的两个问题,它们影响网络的训练过程和性能。梯度消失(VanishingGradientProblem)定义:梯度消失是指在深层神经网络的反向传播过程中,由于链式法则,梯度值随着层数的增加而迅速减小,最终趋近于零。原因:激活函数的导数很小,如Sigmoid或Tanh函数在输入值非常大或非常小的时候导数接近零。权重初始化不当,导致梯度在网络中的传播过
- Python在神经网络中优化激活函数选择使用详解
Rocky006
python开发语言
概要在神经网络中,激活函数扮演着至关重要的角色。它的主要作用是引入非线性因素,使得神经网络能够处理复杂的非线性问题。如果没有激活函数,神经网络仅仅是线性模型的堆叠,无法胜任深度学习中的各种任务。本文将深入探讨几种常用的激活函数,包括Sigmoid、Tanh、ReLU及其变种,并通过具体的代码示例展示它们在Python中的实现和应用。激活函数的重要性激活函数将输入信号进行非线性转换,从而增强神经网络
- keras.optimizers优化器中文文档
地上悬河
python开发语言后端
优化器optimizers优化器是编译Keras模型必要的两个参数之一model=Sequential()model.add(Dense(64,init='uniform',input_dim=10))model.add(Activation('tanh'))model.add(Activation('softmax'))sgd=SGD(lr=0.01,decay=1e-6,momentum=0.
- 如何使用Python绘制常见的几种激活函数?
神笔馬良
python开发语言
问题描述:如何使用Python绘制常见的几种激活函数?(sigmoid、Tanh、Relu、LeakyRelu、ELU、Softplus、Softmax、Smish)解答:这里八种不同的激活函数,使用了不同的颜色进行了绘制。#importpandasaspd#fromscipyimportstatsimportmathimportmatplotlib.pyplotaspltimportnumpya
- 深度学习图像算法工程师--面试准备(1)
小豆包的小朋友0217
深度学习算法人工智能
1请问人工神经网络中为什么ReLU要好过于tanh和Sigmoidfunction?采⽤Sigmoid等函数,算激活函数时(指数运算),计算量⼤,反向传播求误差梯度时,求导涉及除法和指数运算,计算量相对⼤,⽽采⽤ReLU激活函数,整个过程的计算量节省很多。对于深层⽹络,Sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在Sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信
- LSTM原理解析
Andy_shenzl
DeepLearing&pytorchlstm深度学习神经网络
一、背景前文讲了RNN的基本原理,可以发现RNN是一个比较简单的神经网络结构,虽然为文本和时间序列的建模提供了一个很好的思路,但是也有一定的局限性。最直观的就是使用了Tanh函数造成梯度消失的问题。根据Tanh的性质,很容易出现一个现象就是激活函数结果太大,激活函数的绝对值在很接近于1的位置,而对应的激活函数的梯度就会接近于0。这样,在沿着时间反向传播的过程中,梯度就会逐渐减小,知道非常接近于0,
- 神经网络和TensorFlow
异同
逻辑斯蒂分类模型几个关键值加权输入f(x)=(w1x1+w2x2+...+wnn)+b或扩展为f(x)=(w0x0+w2x2+...+wnn),其中w0=b,x0=1激活值a(activation)=delta(f),delta为激活函数,一般可选择sigmoid、relu、tanh、leak_relu等等sigmoid激活函数sigmoid(x)=1/(1+e^-x)性质输出在0-1之间在-6至
- 深度学习图像分类相关概念简析+个人举例3(CNN相关补充,附详细举例代码1)
是lethe先生
深度学习分类cnn
【1】激活函数(ActivationFunction):在深度学习(CNN)中,激活函数用于引入非线性性质,帮助模型学习复杂的关系。常见的激活函数有ReLU、Sigmoid和Tanh等。(1)ReLU激活函数:ReLU函数将负输入值变为零,保留正输入值不变。公式为(2)Sigmoid激活函数:Sigmoid函数将任意实数映射到0到1之间。公式为(3)Tanh激活函数:Tanh函数将任意实数映射到-
- 激活函数:logistic、Tanh、Relu、leaky relu、ELU的图像及python绘制代码
数学不分析
python计算机视觉深度学习神经网络图像处理
#绘制激活函数代码importnumpyasnpimportmatplotlib.pyplotasplt#定义激活函数deflogistic(x):return1/(1+np.exp(-x))deftanh(x):returnnp.tanh(x)defrelu(x):returnnp.maximum(0,x)defleaky_relu(x,alpha=0.01):returnnp.where(x>
- 常用激活函数代码+图像
菜鸟向前冲fighting
机器学习pytorch神经网络深度学习机器学习python
文章目录常见激活函数1.ReLu函数2.Sigmoid函数3.tanh函数4.总结常见激活函数如下图所示,在神经元中,输入的inputs通过加权,求和后,还被作用了一个函数,这个函数就是激活函数。引入激活函数是为了增加神经网络模型的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。%matplotlibinlineimporttorchimportnump
- 深度学习中常用的激活函数
DeepDriving
自动驾驶与深度学习深度学习机器学习人工智能
文章目录前言常用的几种激活函数1Sigmoid激活函数2Tanh激活函数3ReLU激活函数4LeakyRelu激活函数5PRelu激活函数6ELU激活函数7SELU激活函数8Swish激活函数9Mish激活函数如何选择合适的激活函数参考资料前言在人工神经网络中,激活函数扮演了非常重要的角色,其主要作用是对所有的隐藏层和输出层添加一个非线性的操作,使得神经网络的输出更为复杂、表达能力更强。试想一下如
- 【神经网络】单层感知器
Loong_DQX
感知器神经网络机器学习深度学习
在了解感知机之前的先知道1943年Mccilloch和Pitts所提出的M-P模型。M-P模型其实就是现在的神经网络中的一个神经元,但是与之不同的点在于它没有非线性激活函数激活,也不能这么说,就是没有类似sigmoid或者tanh函数激活,而它用的仅仅是一个阈值去激活。所以它的数学表达式为:此处的f函数就是阈值函数。但是这里的权重w和偏置b都是人为设定的,并不存在学习一说,这就是M-P模型与单层感
- Python绘制神经网络中常见激活函数的图形
水木的编程那些事儿
Python学习
前言需要绘制的激活函数有sigmoid,tanh,ReLU,softplus,swish共5个函数。各个函数的公式sigmoid:tanh:ReLU:softplus:swish:其中(⋅)为Logistic函数,β为可学习的参数或一个固定超参数上面5个激活函数对应的代码公式如下:defsigmoid(x):return1/(1+np.exp(-x))deftanh(x):return(np.ex
- 神经网络激活函数的选择
Peyzhang
神经网络深度学习
激活函数(Activationfunctions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。简单的说激活函数就是将函数的输出映射到我们希望的范围,而不只是线性的输出。这里我们讲下面几种常见激活函数,Sigmoid、tanh、ReLU、LeakyReLU,图像如下:Sigmoid函数在逻辑回归中常用Sigmoid作为激活函数定义
- 神经网络 | 常见的激活函数
半亩花海
神经网络学习笔记深度学习神经网络人工智能
Hi,大家好,我是半亩花海。本文主要介绍神经网络中必要的激活函数的定义、分类、作用以及常见的激活函数的功能。目录一、激活函数定义二、激活函数分类三、常见的几种激活函数1.Sigmoid函数(1)公式(2)图像(3)优点与不足2.Tanh函数(1)公式(2)图像(3)优点与不足3.ReLU函数(1)公式(2)图像(3)优点与不足4.Softmax函数(1)公式(2)图像(3)特点与不足一、激活函数定
- Pytorch的主要模块
蒲建建
计算机视觉应用
介绍下pytorch的主要模块和辅助模块。Pytorch的主要模块PyTorch主要包括以下16个模块:1.torch模块torch模块本身包含了PyTorch经常使用的一些激活函数,比如Sigmoid(torch.sigmoid)、ReLU(torch.relu)和Tanh(torch.tanh),以及PyTorch张量的一些操作,比如矩阵的乘法(torch.mm)、张量元素的选择(torch.
- 「深度学习」长短时记忆网络LSTM
Sternstunden
深度学习深度学习lstm人工智能神经网络
一、经典模型\widetilde{c}^{}=tanh(w_{c}[a^{},x^{}]+b_{c})更新门:\Gamma_{u}=\sigma(w_{u}[a^{},x^{}]+b_{u})遗忘门:\Gamma_{f}=\sigma(w_{f}[a^{},x^{}]+b_{f})输出门:\Gamma_{o}=\sigma(w_{o}[a^{},x^{}]+b_{o})c^{}=\Gamma_{u
- 【自然语言处理】P4 神经网络基础 - 激活函数
脚踏实地的大梦想家
#自然语言处理自然语言处理神经网络人工智能
目录激活函数SigmoidTanhReLUSoftmax本节博文介绍四大激活函数,Sigmoid、Tanh、ReLU、Softmax。激活函数为什么深度学习需要激活函数?博主认为,最重要的是引入非线性。神经网络是将众多神经元相互连接形成的网络。如果神经元没有激活函数,那么网络模型都将退化成为线性模型,从而失去了处理非线性问题的能力。非线性问题,如视觉识别、语音识别、图像识别等等。当神经网络具有处理
- 调整Activation Function参数对神经网络的影响
取名真难.
机器学习神经网络深度学习机器学习python人工智能
目录介绍:数据集:模型一(tanh):模型二(relu):模型三(sigmoid):模型四(多层tanh):模型五(多层relu):介绍:ActivationFunction(激活函数)是一种非线性函数,应用在神经网络的每个节点(神经元)上,用来引入非线性变换,增加神经网络的表达能力。在神经网络中,每个节点的输入是通过加权和计算得到的,然后通过激活函数进行非线性变换,得到输出。激活函数可以将输入的
- 机器学习复习(5)——激活函数
不会写代码!!
人工智能机器学习复习机器学习算法机器学习深度学习人工智能
目录激活函数分类区别与优缺点饱和激活函数非饱和激活函数综合考虑Sigmoid激活函数Tanh激活函数ReLU激活函数LeakyRelu激活函数Swish激活函数激活函数分类激活函数可以分为两大类:饱和激活函数:sigmoid、tanh非饱和激活函数:ReLU、LeakyRelu、ELU【指数线性单元】、PReLU【参数化的ReLU】、RReLU【随机ReLU】区别与优缺点饱和激活函数Sigmoid
- day03-今日佳人功能实现
程序媛9688
docker
课程说明首页功能说明系统架构说明实现今日佳人功能实现推荐用户的列表接口增加缓存功能整合前端联调测试1、首页在用户登录成功后,就会进入首页,首页中有今日佳人、推荐好友、探花、搜附近等功能。2、系统架构在开发完SSO系统中的登录功能后,接下来就需要实现其他的功能,在整体架构中,完成与APP对接的服务工程叫my-tanhua-server,真正的核心业务逻辑使用dubbo完成,其工程名叫:my-tanh
- 1.24ANN神经网络(BP)(激活函数的类型,选择,构建不同的ANN网络(二分类,多分类,多标签,线性回归),实例)
CQU_JIAKE
数学方法机器学习&神经网络数模机器学习人工智能
激活函数sigmoid函数sigmoid函数的导数值小于等于0.25tanh函数relu在输入小于0时LR问题实例这里主要就是输出层的搭建,搭建几个输出层以及输出层的函数怎么选择的问题二分类问题就是sigmoid返回落在0和1之间,就是可以体现概率,依据它的输入多分类问题多标签问题就是说这里和多分类的神经网络框架都是一样的,不一样的就是它的激活函数选择线性回归问题实例隐藏层与输出层的输出函数都选择
- 神经网络-常用激活函数
想跳舞的兔子
常用的激活函数有三种:1.SigmoidorLogistic2.Tanh-双曲正切3.ReLu-线性整流函数Sigmoid激活函数:f(x)=1/1+exp(-x)该函数的取值范围为0到1。这是一个S型曲线,容易理解和使用,但是有缺陷:1)消失的梯度问题,2)输出不是以0为中心的,它会让梯度更新在不同的方向上走太远,输出范围在(0,1),这使优化更困难,3)Sigmoids易饱和杀死梯度,4)Si
- Course1神经网络和深度学习编程作业
毛十三_
第三周-带有一个隐藏层的平面数据分类建立一个神经网络,带有一个隐藏层。用到的知识:构建具有单隐藏层的2类分类神经网络。使用具有非线性激活功能激活函数,例如tanh。计算交叉熵损失(损失函数)。实现向前和向后传播。numpy:是用Python进行科学计算的基本软件包。sklearn:为数据挖掘和数据分析提供的简单高效的工具。matplotlib:是一个用于在Python中绘制图表的库。testCas
- day01 深度学习介绍
柠檬不萌只是酸i
深度学习深度学习机器学习人工智能
目录1.1深度学习介绍1.2神经网络NN1、概念:2、神经元3、(单层)神经网络4、感知机(两层)5、多层神经网络6、激活函数(1)饱和与非饱和激活函数(2)饱和激活函数①Sigmoid激活函数②tanh激活函数(3)非饱和激活函数①⚠️ReLU激活函数②LeakyRelu激活函数③ELU激活函数1.3pytorch安装+入门1、pytorch安装2、Tensor张量3、张量的创建方法4、张量的方
- Transformer and Pretrain Language Models3-2
ringthebell
大模型transformer语言模型深度学习
transformerstructure注意力机制的各种变体第二种变体:如果两个向量的维度不一样,我们就需要在中间加上一个权重矩阵,来实现他们之间的相乘,然后最后得到一个标量第三种变体:additiveattention它和前面的有一个比较大的不同,它使用了一层的前馈神经网络,来将两个向量变成一个标量,来得到注意力分数在这个变体中,w1、w2和v,分别是两个权重矩阵和一个权重向量;tanh是一个激
- 李沐《动手学深度学习》多层感知机 模型概念和代码实现
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归目录系列文章一、多层感知机(一)隐藏层(提出原因、方式、多层感知机)(二)激活函数(ReLU、sigmoid、tanh)二、多层感知机的从零开始实现(一)导入数据和相关库(二)初始化模型参数(三)模型构建
- Pytorch第2周:深度学习基础 - Day 8-9: 神经网络基础
M.D
深度学习神经网络人工智能pytorchpythontensorflow2
Pytorch第2周:深度学习基础-Day8-9:神经网络基础学习目标:理解神经网络的基础概念。学习如何使用PyTorch的nn模块构建神经网络。学习内容:神经网络基础概念:神经元:构成神经网络的基本单元,模拟生物神经元的功能。层:神经网络的构建块,包括输入层、隐藏层和输出层。激活函数:引入非线性因素,使网络能够学习复杂的模式,如ReLU、Sigmoid、Tanh等。使用PyTorch的nn模块:
- conda环境下module ‘charset_normalizer‘ has no attribute ‘md__mypyc‘解决方法
智慧医疗探索者
AI运行环境condacharset
1问题描述在运行wav2lip训练时,出现如下错误:D:\.conda\wav2lip\python.exeD:/ml/wav2lip384/parallel_syncnet_tanh.py--data_rootD:/ml/Wav2Lip/data/25fps_out/--checkpoint_dirsyncnet_checkpoints/--checkpoint_pathTraceback(mo
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟