文档扫描OCR识别-1(python)

工具包导入

import numpy as np

import cv2

1

2

函数设定

# 四边形坐标求解

def order_points(pts):

# 一共 4 个坐标点

rect = np.zeros((4, 2), dtype = "float32")

# 按顺序找到对应坐标 0123 分别是 左上,右上,右下,左下

# 计算左上,右下

s = pts.sum(axis = 1)

rect[0] = pts[np.argmin(s)]

rect[2] = pts[np.argmax(s)]

# 计算右上和左下

diff = np.diff(pts, axis = 1)

rect[1] = pts[np.argmin(diff)]

rect[3] = pts[np.argmax(diff)]

return rect

# 获取输入坐标点

def four_point_transform(image, pts):

rect = order_points(pts)

(tl, tr, br, bl) = rect

# 计算输入的 w 和 h 值

widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))

widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))

maxWidth = max(int(widthA), int(widthB))

heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))

heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))

maxHeight = max(int(heightA), int(heightB))

# 变换后对应坐标位置

dst = np.array([

[0, 0],

[maxWidth - 1, 0],

[maxWidth - 1, maxHeight - 1],

[0, maxHeight - 1]], dtype="float32")

# 计算变换矩阵  透视变换 -- 二维升三维再降维  齐次坐标 : 用 N+1 维来代表 N 维坐标 [kx,ky,k]

M = cv2.getPerspectiveTransform(rect, dst)

warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))

# 返回变换后结果

return warped

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):

dim = None

(h, w) = image.shape[:2]

if width is None and height is None:

return image

if width is None:

r = height / float(h)

dim = (int(w * r), height)

else:

r = width / float(w)

dim = (width, int(h * r))

resized = cv2.resize(image, dim, interpolation=inter)

return resized

读取输入

image = cv2.imread('images/receipt.jpg')

1

边缘检测

ratio = image.shape[0] / 500.0

# image.shape[0], 图片垂直尺寸

# image.shape[1], 图片水平尺寸

# image.shape[2], 图片通道数

orig = image.copy()

image = resize(orig, height=500)  # 等比例缩放

# 预处理

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

gray = cv2.GaussianBlur(gray, (5, 5), 0)  # 去除噪音点

edged = cv2.Canny(gray, 75, 200)  # 边缘检测

# 展示预处理结果

print("STEP 1: 边缘检测 ")

cv2.imshow("Image", image)

cv2.imshow("Edged", edged)

cv2.waitKey(0)

cv2.destroyAllWindows()

获取轮廓

# 轮廓检测

cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1]

cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]  # 选取前五个 , 最大的轮廓

# 遍历轮廓

for c in cnts:

# 计算轮廓近似

peri = cv2.arcLength(c, True)  # retval=cv.arcLength(curve, closed) retval 返回值,轮廓的周长 closed 曲线是是否闭合

# C 表示输入的点集

# epsilon 表示从原始轮廓到近似轮廓的最大距离,外汇跟单gendan5.com它是一个准确度参数

# True 表示封闭的

approx = cv2.approxPolyDP(c, 0.02 * peri, True)  # 轮廓 , 轮廓精度 , 越小可能是多边形 , 越大可能是矩形

# 4 个点的时候就拿出来

if len(approx) == 4:

screenCnt = approx

# print(screenCnt)  # 四个点的坐标

break

# 展示结果

print("STEP 2: 获取轮廓 ")

cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)

cv2.imshow("Outline", image)

cv2.waitKey(0)

cv2.destroyAllWindows()

变换

# 透视变换

warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)

# 二值处理

warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)

ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]

cv2.imwrite('scan.jpg', ref)

# 展示结果

print("STEP 3: 变换 ")

cv2.imshow("Original", resize(orig, height = 650))

cv2.imshow("Scanned", resize(ref, height = 650))

cv2.waitKey(0)

你可能感兴趣的:(python,深度学习,神经网络)