由于已经做过了关于SPADE的解析,这一篇主要是看看它在SPADE上有什么改进
def __init__(self, opt):
super().__init__()
self.opt = opt
nf = opt.ngf
self.sw, self.sh = self.compute_latent_vector_size(opt)
self.Zencoder = Zencoder(3, 512)
### 在SEAN中,是默认有一个vae的操作,所以这里要分析一下Zencoder
self.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1)
self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt, Block_Name='head_0')
self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt, Block_Name='G_middle_0')
self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt, Block_Name='G_middle_1')
self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt, Block_Name='up_0')
self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt, Block_Name='up_1')
self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt, Block_Name='up_2')
self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt, Block_Name='up_3', use_rgb=False)
final_nc = nf
if opt.num_upsampling_layers == 'most':
self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt, Block_Name='up_4')
final_nc = nf // 2
self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)
self.up = nn.Upsample(scale_factor=2)
#self.up = nn.Upsample(scale_factor=2, mode='bilinear')
def forward(self, input, rgb_img, obj_dic=None):
seg = input
x = F.interpolate(seg, size=(self.sh, self.sw))
x = self.fc(x)
style_codes = self.Zencoder(input=rgb_img, segmap=seg)
x = self.head_0(x, seg, style_codes, obj_dic=obj_dic)
x = self.up(x)
x = self.G_middle_0(x, seg, style_codes, obj_dic=obj_dic)
if self.opt.num_upsampling_layers == 'more' or \
self.opt.num_upsampling_layers == 'most':
x = self.up(x)
x = self.G_middle_1(x, seg, style_codes, obj_dic=obj_dic)
x = self.up(x)
x = self.up_0(x, seg, style_codes, obj_dic=obj_dic)
x = self.up(x)
x = self.up_1(x, seg, style_codes, obj_dic=obj_dic)
x = self.up(x)
x = self.up_2(x, seg, style_codes, obj_dic=obj_dic)
x = self.up(x)
x = self.up_3(x, seg, style_codes, obj_dic=obj_dic)
# if self.opt.num_upsampling_layers == 'most':
# x = self.up(x)
# x= self.up_4(x, seg, style_codes, obj_dic=obj_dic)
x = self.conv_img(F.leaky_relu(x, 2e-1))
x = F.tanh(x)
return x
class Zencoder(torch.nn.Module):
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=2, norm_layer=nn.InstanceNorm2d):
super(Zencoder, self).__init__()
self.output_nc = output_nc
model = [nn.ReflectionPad2d(1), nn.Conv2d(input_nc, ngf, kernel_size=3, padding=0),
norm_layer(ngf), nn.LeakyReLU(0.2, False)]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), nn.LeakyReLU(0.2, False)]
### upsample
for i in range(1):
mult = 2**(n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)), nn.LeakyReLU(0.2, False)]
###当output_padding=stride-1时,输出的特征图/输入的特征图=stride
model += [nn.ReflectionPad2d(1), nn.Conv2d(256, output_nc, kernel_size=3, padding=0), nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input, segmap):
codes = self.model(input) #input为style image, 通道为512维,大小和input一样大的特征向量图
segmap = F.interpolate(segmap, size=codes.size()[2:], mode='nearest')
# print(segmap.shape)
# print(codes.shape)
b_size = codes.shape[0]
# h_size = codes.shape[2]
# w_size = codes.shape[3]
f_size = codes.shape[1]
s_size = segmap.shape[1]
codes_vector = torch.zeros((b_size, s_size, f_size), dtype=codes.dtype, device=codes.device)
###下面这一步就是在做region-wise average pooling
for i in range(b_size):
for j in range(s_size):
component_mask_area = torch.sum(segmap.bool()[i, j])
### segmap.bool()[i,j] 为第i个batch下的第j个label中的bool形式的mask
### 经过torch.sum把这个mask下为true的值加了起来,得到范围在[0,H x W]的值
if component_mask_area > 0:
### 确保这个label下的segmap里的值不全为0(0意味着不属于任何label),也就是这一类标签是存在的,而不是为空的
codes_component_feature = codes[i].masked_select(segmap.bool()[i, j]).reshape(f_size, component_mask_area).mean(1)
### A.masked_select(mask)的用法:根据mask返回A中在mask里对应坐标值为True的值,返回值的大小为所有的True的值flatted后的一维向量
### 当mask的大小与A的大小不相等时,会做广播
### 对f_szie个维度上的有效区域求均值
codes_vector[i][j] = codes_component_feature
# codes_avg[i].masked_scatter_(segmap.bool()[i, j], codes_component_mu)
return codes_vector
#输出结果的大小为[B,s_size, f_size]
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, opt, Block_Name=None, use_rgb=True):
super().__init__()
self.use_rgb = use_rgb
self.Block_Name = Block_Name
self.status = opt.status
# Attributes
self.learned_shortcut = (fin != fout)
fmiddle = min(fin, fout)
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if 'spectral' in opt.norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
spade_config_str = opt.norm_G.replace('spectral', '')
########### Modifications 1
normtype_list = ['spadeinstance3x3', 'spadesyncbatch3x3', 'spadebatch3x3']
our_norm_type = 'spadesyncbatch3x3'
self.ace_0 = ACE(our_norm_type, fin, 3, ACE_Name= Block_Name + '_ACE_0', status=self.status, spade_params=[spade_config_str, fin, opt.semantic_nc], use_rgb=use_rgb)
########### Modifications 1
########### Modifications 1
self.ace_1 = ACE(our_norm_type, fmiddle, 3, ACE_Name= Block_Name + '_ACE_1', status=self.status, spade_params=[spade_config_str, fmiddle, opt.semantic_nc], use_rgb=use_rgb)
########### Modifications 1
if self.learned_shortcut:
self.ace_s = ACE(our_norm_type, fin, 3, ACE_Name= Block_Name + '_ACE_s', status=self.status, spade_params=[spade_config_str, fin, opt.semantic_nc], use_rgb=use_rgb)
# note the resnet block with SPADE also takes in |seg|,
# the semantic segmentation map as input
def forward(self, x, seg, style_codes, obj_dic=None):
x_s = self.shortcut(x, seg, style_codes, obj_dic)
########### Modifications 1
dx = self.ace_0(x, seg, style_codes, obj_dic)
dx = self.conv_0(self.actvn(dx))
dx = self.ace_1(dx, seg, style_codes, obj_dic)
dx = self.conv_1(self.actvn(dx))
########### Modifications 1
out = x_s + dx
return out
def shortcut(self, x, seg, style_codes, obj_dic):
if self.learned_shortcut:
x_s = self.ace_s(x, seg, style_codes, obj_dic)
x_s = self.conv_s(x_s)
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
class ACE(nn.Module):
def __init__(self, config_text, norm_nc, label_nc, ACE_Name=None, status='train', spade_params=None, use_rgb=True):
super().__init__()
self.ACE_Name = ACE_Name
self.status = status
self.save_npy = True
self.Spade = SPADE(*spade_params)
self.use_rgb = use_rgb
self.style_length = 512
self.blending_gamma = nn.Parameter(torch.zeros(1), requires_grad=True)
self.blending_beta = nn.Parameter(torch.zeros(1), requires_grad=True)
self.noise_var = nn.Parameter(torch.zeros(norm_nc), requires_grad=True)
assert config_text.startswith('spade')
parsed = re.search('spade(\D+)(\d)x\d', config_text)
param_free_norm_type = str(parsed.group(1))
ks = int(parsed.group(2))
pw = ks // 2
if param_free_norm_type == 'instance':
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
elif param_free_norm_type == 'syncbatch':
self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False)
elif param_free_norm_type == 'batch':
self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
else:
raise ValueError('%s is not a recognized param-free norm type in SPADE'
% param_free_norm_type)
# The dimension of the intermediate embedding space. Yes, hardcoded.
if self.use_rgb:
self.create_gamma_beta_fc_layers()
self.conv_gamma = nn.Conv2d(self.style_length, norm_nc, kernel_size=ks, padding=pw)
self.conv_beta = nn.Conv2d(self.style_length, norm_nc, kernel_size=ks, padding=pw)
def forward(self, x, segmap, style_codes=None, obj_dic=None):
# Part 1. generate parameter-free normalized activations
added_noise = (torch.randn(x.shape[0], x.shape[3], x.shape[2], 1).cuda() * self.noise_var).transpose(1, 3)
normalized = self.param_free_norm(x + added_noise)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
if self.use_rgb:
[b_size, f_size, h_size, w_size] = normalized.shape
middle_avg = torch.zeros((b_size, self.style_length, h_size, w_size), device=normalized.device)
if self.status == 'UI_mode':
############## hard coding
for i in range(1):
for j in range(segmap.shape[1]):
component_mask_area = torch.sum(segmap.bool()[i, j])
if component_mask_area > 0:
if obj_dic is None:
print('wrong even it is the first input')
else:
style_code_tmp = obj_dic[str(j)]['ACE']
middle_mu = F.relu(self.__getattr__('fc_mu' + str(j))(style_code_tmp))
component_mu = middle_mu.reshape(self.style_length, 1).expand(self.style_length,component_mask_area)
middle_avg[i].masked_scatter_(segmap.bool()[i, j], component_mu)
else:
for i in range(b_size):
for j in range(segmap.shape[1]):
component_mask_area = torch.sum(segmap.bool()[i, j])
if component_mask_area > 0:
middle_mu = F.relu(self.__getattr__('fc_mu' + str(j))(style_codes[i][j]))
component_mu = middle_mu.reshape(self.style_length, 1).expand(self.style_length, component_mask_area)
middle_avg[i].masked_scatter_(segmap.bool()[i, j], component_mu)
if self.status == 'test' and self.save_npy and self.ACE_Name=='up_2_ACE_0':
tmp = style_codes[i][j].cpu().numpy()
dir_path = 'styles_test'
############### some problem with obj_dic[i]
im_name = os.path.basename(obj_dic[i])
folder_path = os.path.join(dir_path, 'style_codes', im_name, str(j))
if not os.path.exists(folder_path):
os.makedirs(folder_path)
style_code_path = os.path.join(folder_path, 'ACE.npy')
np.save(style_code_path, tmp)
gamma_avg = self.conv_gamma(middle_avg)
beta_avg = self.conv_beta(middle_avg)
gamma_spade, beta_spade = self.Spade(segmap)
gamma_alpha = F.sigmoid(self.blending_gamma)
beta_alpha = F.sigmoid(self.blending_beta)
gamma_final = gamma_alpha * gamma_avg + (1 - gamma_alpha) * gamma_spade
beta_final = beta_alpha * beta_avg + (1 - beta_alpha) * beta_spade
out = normalized * (1 + gamma_final) + beta_final
else:
gamma_spade, beta_spade = self.Spade(segmap)
gamma_final = gamma_spade
beta_final = beta_spade
out = normalized * (1 + gamma_final) + beta_final
return out
def create_gamma_beta_fc_layers(self):
################### These codes should be replaced with torch.nn.ModuleList
style_length = self.style_length
self.fc_mu0 = nn.Linear(style_length, style_length)
self.fc_mu1 = nn.Linear(style_length, style_length)
self.fc_mu2 = nn.Linear(style_length, style_length)
self.fc_mu3 = nn.Linear(style_length, style_length)
self.fc_mu4 = nn.Linear(style_length, style_length)
self.fc_mu5 = nn.Linear(style_length, style_length)
self.fc_mu6 = nn.Linear(style_length, style_length)
self.fc_mu7 = nn.Linear(style_length, style_length)
self.fc_mu8 = nn.Linear(style_length, style_length)
self.fc_mu9 = nn.Linear(style_length, style_length)
self.fc_mu10 = nn.Linear(style_length, style_length)
self.fc_mu11 = nn.Linear(style_length, style_length)
self.fc_mu12 = nn.Linear(style_length, style_length)
self.fc_mu13 = nn.Linear(style_length, style_length)
self.fc_mu14 = nn.Linear(style_length, style_length)
self.fc_mu15 = nn.Linear(style_length, style_length)
self.fc_mu16 = nn.Linear(style_length, style_length)
self.fc_mu17 = nn.Linear(style_length, style_length)
self.fc_mu18 = nn.Linear(style_length, style_length)
未完待续