chainer-图像分类-ShuffleNet_V1代码重构【附源码】

文章目录

  • 前言
  • 代码实现
  • 调用方式


前言

本文基于chainer实现ShuffleNet_V1网络结构,并基于torch的结构方式构建chainer版的,并计算ShuffleNet_V1的参数量。


代码实现

def conv3x3(in_channels, out_channels, stride=1, padding=1, bias=True, groups=1):    
    return L.Convolution2D(
        in_channels, 
        out_channels, 
        ksize=3, 
        stride=stride,
        pad=padding,
        nobias=not bias,
        groups=groups)

def conv1x1(in_channels, out_channels, groups=1):
    """1x1 convolution with padding
    - Normal pointwise convolution When groups == 1
    - Grouped pointwise convolution when groups > 1
    """
    return L.Convolution2D(
        in_channels, 
        out_channels, 
        ksize=1, 
        groups=groups,
        stride=1)

def channel_shuffle(x, groups=2):
    n, c, h, w = x.shape
    x = x.reshape(n, groups, c // groups, h, w)  # x.view(batchsize, groups, channels_per_group, height, width)
    x = x.transpose(0, 2, 1, 3, 4)
    x = x.reshape(n, c, h, w)
    return x

class ShuffleUnit(chainer.Chain):
    def _make_grouped_conv1x1(self,group_num, in_channels, out_channels, groups, batch_norm=True, relu=False):
        self.layers += [('conv1x1_{0}'.format(group_num),conv1x1(in_channels, out_channels, groups=groups))]
        if batch_norm:
            self.layers += [('batch_norm_{0}'.format(group_num),L.BatchNormalization(out_channels))]
        if relu:
            self.layers += [('_relu_{0}'.format(group_num),ReLU())]

    def __init__(self, in_channels, out_channels, groups=3, grouped_conv=True, combine='add'):
        super(ShuffleUnit, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.grouped_conv = grouped_conv
        self.combine = combine
        self.groups = groups
        self.bottleneck_channels = self.out_channels // 4

        if self.combine == 'add':
            self.depthwise_stride = 1
            self._combine_func = self._add
        elif self.combine == 'concat':
            self.depthwise_stride = 2
            self._combine_func = self._concat
            self.out_channels -= self.in_channels
        else:
            raise ValueError("Cannot combine tensors with \"{}\"" \
                             "Only \"add\" and \"concat\" are" \
                             "supported".format(self.combine))

        self.first_1x1_groups = self.groups if grouped_conv else 1

        self.layers = []
        
        # g_conv_1x1_compress
        self._make_grouped_conv1x1(1,self.in_channels, self.bottleneck_channels, self.first_1x1_groups, batch_norm=True, relu=True)

        self.layers += [('@channel_shuffle',None)]
        
        # 3x3 depthwise convolution followed by batch normalization
        self.layers += [('depthwise_conv3x3',conv3x3(self.bottleneck_channels, self.bottleneck_channels, stride=self.depthwise_stride, groups=self.bottleneck_channels))]
        self.layers += [('bn_after_depthwise',L.BatchNormalization(self.bottleneck_channels))]

        # Use 1x1 grouped convolution to expand from 
        # bottleneck_channels to out_channels
        # g_conv_1x1_expand
        self._make_grouped_conv1x1(2, self.bottleneck_channels, self.out_channels, self.groups, batch_norm=True, relu=False)

        with self.init_scope():
            for n in self.layers:
                if not n[0].startswith('_') and not n[0].startswith('@') :
                    setattr(self, n[0], n[1])

    def _add(self,x, out):
        return x + out

    def _concat(self,x, out):
        return F.concat((x, out))

    def forward(self, x):
        # save for combining later with output
        residual = x

        if self.combine == 'concat':
            residual = average_pooling_2d(residual,ksize=3,stride=2,pad=1)

        for n, f in self.layers:
            # print(n,x.shape)
            if n.startswith('_'):
                x = f.apply((x,))[0]
            elif n.startswith('@'):
                x = channel_shuffle(x, self.groups)
            else:
                x = getattr(self, n)(x)
                
        x = self._combine_func(residual, x)
        return F.relu(x)

class ShuffleNet_V1(chainer.Chain):
    cfgs={
        'shufflenetv1_groups_1':{'groups':1,'stages_repeats':[3, 7, 3],'stage_out_channels':[-1, 24, 144, 288, 567]},
        'shufflenetv1_groups_2':{'groups':2,'stages_repeats':[3, 7, 3],'stage_out_channels':[-1, 24, 200, 400, 800]},
        'shufflenetv1_groups_3':{'groups':3,'stages_repeats':[3, 7, 3],'stage_out_channels':[-1, 24, 240, 480, 960]},
        'shufflenetv1_groups_4':{'groups':4,'stages_repeats':[3, 7, 3],'stage_out_channels':[-1, 24, 272, 544, 1088]},
        'shufflenetv1_groups_8':{'groups':8,'stages_repeats':[3, 7, 3],'stage_out_channels':[-1, 24, 384, 768, 1536]}
    }

    def _make_stage(self, stage):
        stage_name = "ShuffleUnit_Stage{}".format(stage)
        grouped_conv = stage > 2
        self.layers += [(stage_name+"_0",ShuffleUnit(self.stage_out_channels[stage-1],self.stage_out_channels[stage],groups=self.groups,grouped_conv=grouped_conv,combine='concat'))]

        # add more ShuffleUnits depending on pre-defined number of repeats
        for i in range(self.stage_repeats[stage-2]):
            name = stage_name + "_{}".format(i+1)
            self.layers += [(name,ShuffleUnit(self.stage_out_channels[stage], self.stage_out_channels[stage], groups=self.groups, grouped_conv=True, combine='add'))]

    def __init__(self, model_name='shufflenetv1_groups_1', channels=3, num_classes=1000,batch_size=4,image_size = 244,**kwargs):
        super(ShuffleNet_V1, self).__init__()

        self.groups =  self.cfgs[model_name]['groups']
        self.stage_repeats = self.cfgs[model_name]['stages_repeats']
        self.in_channels =  channels
        self.num_classes = num_classes
        self.image_size = image_size

        # index 0 is invalid and should never be called.
        # only used for indexing convenience.
        self.stage_out_channels = self.cfgs[model_name]['stage_out_channels']
        self.layers = []
        # Stage 1 always has 24 output channels
        self.layers += [('conv1',conv3x3(self.in_channels, self.stage_out_channels[1], stride=2))]
        output_size = int((self.image_size-3+2*1)/2+1)
        
        self.layers += [('_maxpool',MaxPooling2D(ksize=3, stride=2,pad=1))]
        output_size = math.ceil((output_size-3+2*1)/2+1)
        # Stage 2
        self._make_stage(2)
        output_size = int((output_size-3+2*1)/2+1)
        # Stage 3
        self._make_stage(3)
        output_size = int((output_size-3+2*1)/2+1)
        # Stage 4
        self._make_stage(4)
        output_size = int((output_size-3+2*1)/2+1)

        num_inputs = self.stage_out_channels[-1]

        self.layers += [('_avgpool',AveragePooling2D(ksize=output_size,stride=1,pad=0))]

        self.layers += [('_reshape',Reshape((batch_size,num_inputs)))]
        
        self.layers += [('fc',L.Linear(num_inputs, self.num_classes))]
        
        with self.init_scope():
            for n in self.layers:
                if not n[0].startswith('_'):
                    setattr(self, n[0], n[1])
    
    def forward(self, x):
        for n, f in self.layers:
            origin_size = x.shape
            if not n.startswith('_'):
                x = getattr(self, n)(x)
            else:
                x = f.apply((x,))[0]
            print(n,origin_size,x.shape)
        if chainer.config.train:
            return x
        return F.softmax(x)

注意此类就是ShuffleNet_V1的实现过程,注意网络的前向传播过程中,分了训练以及测试。
训练过程中直接返回x,测试过程中会进入softmax得出概率

调用方式


if __name__ == '__main__':
    batch_size = 4
    n_channels = 3
    image_size = 224
    num_classes = 123
    
    model = ShuffleNet_V1(num_classes=num_classes, channels=n_channels,image_size=image_size,batch_size=batch_size)
    print("参数量",model.count_params())

    x = np.random.rand(batch_size, n_channels, image_size, image_size).astype(np.float32)
    t = np.random.randint(0, num_classes, size=(batch_size,)).astype(np.int32)
    with chainer.using_config('train', True):
        y1 = model(x)
    loss1 = F.softmax_cross_entropy(y1, t)

chainer-图像分类-ShuffleNet_V1代码重构【附源码】_第1张图片

你可能感兴趣的:(深度学习-chainer,分类,重构,python,chainer,ShuffleNet_V1)