实体对齐汇总

文章目录

  • 1.综述
  • 2.技术论文
  • 3.汇总
    • 3.1定义
      • 定义统一
      • EA
    • 3.2 评价指标
    • 3.3 数据集
    • 3.4 数据预处理技术
    • 3.5 索引
    • 3.6 对齐
      • 3.6.1 按属性相似度/文本相似度做:成对实体对齐
      • 3.6.2 协同对齐:考虑不同实体间的关联
        • 3.6.2.1 局部实体对齐
        • 3.6.2.2 全局实体对齐
      • 3.6.3 基于embedding的方法分类
  • 4.开源代码
  • 5.效果比较
  • 6.使用场景
  • 7. 实验效果
    • 7.1 DBP15k
    • 7.2EN-FR
    • 7.3 SRPRS
    • 7.4 DWY100k
  • 参考文献

1.综述

  • embedding 方法
  1. OpenEA: “A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs”.
    Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami, Chengkai Li. PVLDB, vol. 13. ACM 2020 [paper][code][笔记]
  2. "An Experimental Study of State-of-the-Art Entity Alignment Approaches".
    Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, Fabian Suchanek. TKDE, 2020 [paper][笔记]

2.技术论文

实体对齐论文列表

  1. JE: “A Joint Embedding Method for Entity Alignment of Knowledge Bases”.
    Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, Jun Zhao. (CCKS 2016) [paper][code]

  2. MTransE: “Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment”.
    Muhao Chen, Yingtao Tian, Mohan Yang, Carlo Zaniolo. (IJCAI 2017) [paper][code]

  3. JAPE: “Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding”.
    Zequn Sun, Wei Hu, Chengkai Li. (ISWC 2017) [paper][code]

  4. IPTransE: “Iterative Entity Alignment via Joint Knowledge Embeddings”.
    Hao Zhu, Ruobing Xie, Zhiyuan Liu, Maosong Sun. (IJCAI 2017) [paper][code]

  5. BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.
    Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [paper][code][笔记]

  6. KDCoE: “Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment”.
    Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, Carlo Zaniolo. (IJCAI 2018) [paper][code]

  7. NTAM: “Non-translational Alignment for Multi-relational Networks”.
    Shengnan Li, Xin Li, Rui Ye, Mingzhong Wang, Haiping Su, Yingzi Ou. (IJCAI 2018) [paper][code]

  8. **“LinkNBed: Multi-Graph Representation Learning with Entity Linkage”.""
    Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan Zha, Xin Luna Dong (ACL 2018) [paper]

  9. GCN-Align: “Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks”.
    Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. (EMNLP 2018) [paper][code]

  10. AttrE: “Entity Alignment between Knowledge Graphs Using Attribute Embeddings”.
    Bayu D. Trsedya, Jianzhong Qi, Rui Zhang. (AAAI 2019) [paper][code]

  11. SEA: “Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference”.
    Shichao Pei, Lu Yu, Robert Hoehndorf, Xiangliang Zhang. (WWW 2019) [paper][code]

  12. RSN4EA: “Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs”.
    Lingbing Guo, Zequn Sun, Wei Hu. (ICML 2019) [paper][code]

  13. MuGNN: “Multi-Channel Graph Neural Network for Entity Alignment”.
    Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, Tat-Seng Chua. (ACL 2019) [paper][code]

  14. GMNN: “Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network”.
    Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. (ACL 2019) [paper][code]

  15. MultiKE: “Multi-view Knowledge Graph Embedding for Entity Alignment”.
    Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (IJCAI 2019) [paper][code]

  16. RDGCN: “Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, Dongyan Zhao. (IJCAI 2019) [paper][code]

  17. OTEA: “Improving Cross-lingual Entity Alignment via Optimal Transport”.
    Shichao Pei, Lu Yu, Xiangliang Zhang. (IJCAI 2019) [paper][code]

  18. NAEA: “Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs”.
    Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, Li Guo. (IJCAI 2019) [paper][code]

  19. AVR-GCN: “A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment”.
    Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, Mingzhong Wang. (IJCAI 2019) [paper][code]

  20. TransEdge: “TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs”.
    Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (ISWC 2019) [paper][code]

  21. KECG: “Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model”.
    Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua. (EMNLP 2019) [paper][code]

  22. HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]

  23. MMEA: “Modeling Multi-mapping relations for Precise Cross-lingual Entity Alignment”.
    Xiaofei Shi, Yanghua Xiao. (EMNLP 2019) [paper][code]

  24. HMAN: “Aligning Cross-lingual Entities with Multi-Aspect Information”.
    Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, Xu Sun. (EMNLP 2019) [paper][code]

  25. AKE: “Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding”.
    Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, Bin Wang. (ICDM 2019) [paper][code]

  26. MRAEA: “MRAEA: An Efficient and Robust Cross-lingual Entity Alignment Approach via Meta Relation Aware Representation”.
    Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu. (WSDM 2020) [paper][code]

  27. AliNet: “Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation”.
    Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu. (AAAI 2020) [paper][code]

  28. "Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment".
    Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu. (AAAI 2020) [paper][code]

  29. COTSAE: “COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment”.
    Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, Bing Xie. (AAAI 2020) [paper][code]

  30. CEAFF: “Collective Embedding-based Entity Alignment via Adaptive Features”.
    Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xuemin Lin. (ICDE 2020) [paper][code]

  31. "Deep Graph Matching Consensus".
    Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege. (ICLR 2020) [paper][code]

  32. CG-MuAlign: “Collective Multi-type Entity Alignment Between Knowledge Graphs”.
    Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han. (WWW 2020) [paper][code]

  33. JarKA: “JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment”.
    Bo Chen, Jing Zhang, Xiaobin Tang, Hong Chen, Cuiping Li. (PAKDD 2020) [paper][code]

  34. NMN: “Neighborhood Matching Network for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (ACL 2020) [paper][code]

  35. BERT-INT: “BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment”.
    Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, Cuiping Li. (IJCAI 2020) [paper][code]

  36. SSP: “Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment”.
    Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, Wei Zhang. (IJCAI 2020) [paper][code]

  37. DAT: “Degree-Aware Alignment for Entities in Tail”.
    Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, Zhen Tan. (SIGIR 2020) [paper][code]

  38. RREA: “Relational Reflection Entity Alignment”.
    Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan. (CIKM 2020) [paper][code]

  39. REA: “REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs”.
    Shichao Pei, Lu Yu, Guoxian Yu, Xiangliang Zhang. (KDD 2020) [paper][code]

  40. HyperKA: “Knowledge Association with Hyperbolic Knowledge Graph Embeddings”.
    Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, Wei Zhang. (EMNLP 2020) [paper][code]

  41. AttrGNN: “Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment”.
    Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, Tat-Seng Chua. (EMNLP 2020) [paper][code]

  42. EPEA: “Knowledge Graph Alignment with Entity-Pair Embedding”.
    Zhichun Wang, Jinjian Yang, Xiaoju Ye. (EMNLP 2020) [paper]

  43. "Learning Short-Term Differences and Long-Term Dependencies for Entity Alignment".
    Jia Chen, Zhixu Li, Pengpeng Zhao, An Liu, Lei Zhao, Zhigang Chen, Xiangliang Zhang. (ISWC 2020) [paper]

  44. "Visual Pivoting for (Unsupervised) Entity Alignment".
    Fangyu Liu, Muhao Chen, Dan Roth, Nigel Collier. (AAAI 2021) [paper][code]

  45. DINGAL: “Dynamic Knowledge Graph Alignment”.
    Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, Hanghang Tong. (AAAI 2021) [paper]

  46. RNM: “Relation-Aware Neighborhood Matching Model for Entity Alignment”.
    Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yingpeng Du. (AAAI 2021) [paper]

  47. "Cross-lingual Entity Alignment with Incidental Supervision".
    Muhao Chen, Weijia Shi, Ben Zhou, Dan Roth. (EACL 2021) [paper][code]

  48. "Active Learning for Entity Alignment".
    Max Berrendorf, Evgeniy Faerman, Volker Tresp. (ECIR 2021) [paper]

  49. Dual-AMN: “Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining”.
    Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan. (WWW 2021) [paper][code]1. JE: “A Joint Embedding Method for Entity Alignment of Knowledge Bases”.
    Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, Jun Zhao. (CCKS 2016) [paper][code]

  50. MTransE: “Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment”.
    Muhao Chen, Yingtao Tian, Mohan Yang, Carlo Zaniolo. (IJCAI 2017) [paper][code]

  51. JAPE: “Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding”.
    Zequn Sun, Wei Hu, Chengkai Li. (ISWC 2017) [paper][code]

  52. IPTransE: “Iterative Entity Alignment via Joint Knowledge Embeddings”.
    Hao Zhu, Ruobing Xie, Zhiyuan Liu, Maosong Sun. (IJCAI 2017) [paper][code]

  53. BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.
    Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [paper][code]

  54. KDCoE: “Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment”.
    Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, Carlo Zaniolo. (IJCAI 2018) [paper][code]

  55. NTAM: “Non-translational Alignment for Multi-relational Networks”.
    Shengnan Li, Xin Li, Rui Ye, Mingzhong Wang, Haiping Su, Yingzi Ou. (IJCAI 2018) [paper][code]

  56. **“LinkNBed: Multi-Graph Representation Learning with Entity Linkage”.""
    Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan Zha, Xin Luna Dong (ACL 2018) [paper]

  57. GCN-Align: “Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks”.
    Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. (EMNLP 2018) [paper][code]

  58. AttrE: “Entity Alignment between Knowledge Graphs Using Attribute Embeddings”.
    Bayu D. Trsedya, Jianzhong Qi, Rui Zhang. (AAAI 2019) [paper][code]

  59. SEA: “Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference”.
    Shichao Pei, Lu Yu, Robert Hoehndorf, Xiangliang Zhang. (WWW 2019) [paper][code]

  60. RSN4EA: “Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs”.
    Lingbing Guo, Zequn Sun, Wei Hu. (ICML 2019) [paper][code]

  61. MuGNN: “Multi-Channel Graph Neural Network for Entity Alignment”.
    Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, Tat-Seng Chua. (ACL 2019) [paper][code]

  62. GMNN: “Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network”.
    Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. (ACL 2019) [paper][code]

  63. MultiKE: “Multi-view Knowledge Graph Embedding for Entity Alignment”.
    Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (IJCAI 2019) [paper][code]

  64. RDGCN: “Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, Dongyan Zhao. (IJCAI 2019) [paper][code]

  65. OTEA: “Improving Cross-lingual Entity Alignment via Optimal Transport”.
    Shichao Pei, Lu Yu, Xiangliang Zhang. (IJCAI 2019) [paper][code]

  66. NAEA: “Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs”.
    Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, Li Guo. (IJCAI 2019) [paper][code]

  67. AVR-GCN: “A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment”.
    Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, Mingzhong Wang. (IJCAI 2019) [paper][code]

  68. TransEdge: “TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs”.
    Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (ISWC 2019) [paper][code]

  69. KECG: “Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model”.
    Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua. (EMNLP 2019) [paper][code]

  70. HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]

  71. MMEA: “Modeling Multi-mapping relations for Precise Cross-lingual Entity Alignment”.
    Xiaofei Shi, Yanghua Xiao. (EMNLP 2019) [paper][code]

  72. HMAN: “Aligning Cross-lingual Entities with Multi-Aspect Information”.
    Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, Xu Sun. (EMNLP 2019) [paper][code]

  73. AKE: “Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding”.
    Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, Bin Wang. (ICDM 2019) [paper][code]

  74. MRAEA: “MRAEA: An Efficient and Robust Cross-lingual Entity Alignment Approach via Meta Relation Aware Representation”.
    Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu. (WSDM 2020) [paper][code]

  75. AliNet: “Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation”.
    Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu. (AAAI 2020) [paper][code]

  76. "Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment".
    Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu. (AAAI 2020) [paper][code]

  77. COTSAE: “COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment”.
    Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, Bing Xie. (AAAI 2020) [paper][code]

  78. CEAFF: “Collective Embedding-based Entity Alignment via Adaptive Features”.
    Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xuemin Lin. (ICDE 2020) [paper][code]

  79. "Deep Graph Matching Consensus".
    Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege. (ICLR 2020) [paper][code]

  80. CG-MuAlign: “Collective Multi-type Entity Alignment Between Knowledge Graphs”.
    Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han. (WWW 2020) [paper][code]

  81. JarKA: “JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment”.
    Bo Chen, Jing Zhang, Xiaobin Tang, Hong Chen, Cuiping Li. (PAKDD 2020) [paper][code]

  82. NMN: “Neighborhood Matching Network for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (ACL 2020) [paper][code]

  83. BERT-INT: “BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment”.
    Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, Cuiping Li. (IJCAI 2020) [paper][code]

  84. SSP: “Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment”.
    Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, Wei Zhang. (IJCAI 2020) [paper][code]

  85. DAT: “Degree-Aware Alignment for Entities in Tail”.
    Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, Zhen Tan. (SIGIR 2020) [paper][code]

  86. RREA: “Relational Reflection Entity Alignment”.
    Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan. (CIKM 2020) [paper][code]

  87. REA: “REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs”.
    Shichao Pei, Lu Yu, Guoxian Yu, Xiangliang Zhang. (KDD 2020) [paper][code]

  88. HyperKA: “Knowledge Association with Hyperbolic Knowledge Graph Embeddings”.
    Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, Wei Zhang. (EMNLP 2020) [paper][code]

  89. AttrGNN: “Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment”.
    Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, Tat-Seng Chua. (EMNLP 2020) [paper][code]

  90. EPEA: “Knowledge Graph Alignment with Entity-Pair Embedding”.
    Zhichun Wang, Jinjian Yang, Xiaoju Ye. (EMNLP 2020) [paper]

  91. "Learning Short-Term Differences and Long-Term Dependencies for Entity Alignment".
    Jia Chen, Zhixu Li, Pengpeng Zhao, An Liu, Lei Zhao, Zhigang Chen, Xiangliang Zhang. (ISWC 2020) [paper]

  92. "Visual Pivoting for (Unsupervised) Entity Alignment".
    Fangyu Liu, Muhao Chen, Dan Roth, Nigel Collier. (AAAI 2021) [paper][code]

  93. DINGAL: “Dynamic Knowledge Graph Alignment”.
    Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, Hanghang Tong. (AAAI 2021) [paper]

  94. RNM: “Relation-Aware Neighborhood Matching Model for Entity Alignment”.
    Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yingpeng Du. (AAAI 2021) [paper]

  95. "Cross-lingual Entity Alignment with Incidental Supervision".
    Muhao Chen, Weijia Shi, Ben Zhou, Dan Roth. (EACL 2021) [paper][code]

  96. "Active Learning for Entity Alignment".
    Max Berrendorf, Evgeniy Faerman, Volker Tresp. (ECIR 2021) [paper]

  97. Dual-AMN: “Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining”.
    Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan. (WWW 2021) [paper][code]

3.汇总

3.1定义

  • 匹配两个KG或一个KG内指向同一物理对象,合并向同时提

定义统一

  • Entity Linking=entity disambiguation
  • Entity resolution=entity matching=deduplication=record linkage

EA

EA

  • 分类:

    • Scope:
      • entity alignment<-本文只考虑这个
      • relation
      • 类别对齐:class of taxonomies of two KGs
      • 方法:有一次性执行三种任务的joint model
    • Background knowledge
      • OAEI:使用ontology(T-box)作为背景信息
      • 另一种:不使用ontology的方法
    • Training
      • 无监督:PARIS,SIGMa,AML
      • 有监督:基于pre-defined mappings的
      • 半监督:bootstrapping(self-training,co-training)
  • EA with deep leaning:

    • 基于graph representation learning technologies
      • 建模KG结构
      • 生成实体嵌入
  • 比较

    • 无监督
      • PARIS
      • Agreement-MakerLight(AML):使用背景信息(本体)
    • ER方法:基于名称的启发式方法
      • goal相同:EA=ER–因为相同所以比较ER方法
  • Bechmarks:

    • 语言内+DBPedia
      • DBP15K
      • DWY15
      • 问题:现有的Bechmarks,只包含schema和instance信息。对不假设有可用的本体的EA方法来说。–所以本文不介绍本体?
  • PS:

    • OAEI:推广了KG track
    • 不公平

3.2 评价指标

  • 对齐质量:准确性和全面性
    • MR
    • MRR
    • Hits@m:m=1为precision
    • precision/recall/f1
      • 传统方法再用
  • 对齐效率:分区索引技术对候选匹配对的筛选能力和准确性
    • 缩减率
    • 候选对完整性
    • 候选对质量

3.3 数据集

  • Embedding数据集

    • FBK15
    • FBK15-237
    • WN18
    • WN18RR
  • 传统实体对齐数据集:

    • OAEI(since 2004)
  • embedding实体对齐数据集

    • DBP15K:

      • 跨语言:
        • zh-en,
          • zh:关系三元组数:70414,关系数1701,属性三元组数:248035
          • en: 关系三元组数:95142,关系数1323,属性三元组数:343218
        • ja-en,
          • ja:关系三元组数:77214,关系数1299,属性三元组数:248991
          • en: 关系三元组数:93484,关系数1153,属性三元组数:320616
        • fr-en
          • fr:关系三元组数:105998,关系数903,属性三元组数:273825
          • en: 关系三元组数:115722,关系数1208,属性三元组数:351094
      • 实体对齐连接数:15k(每对语言间)
      • 度的分布:大多在1,从2-10,度越大,实体数量下降
      • DBPedia
    • WK3L

    • DWY100K:

      • 每个KG实体数:100k
      • 单语言:
        • DBP-WD,
          • DBP:关系三元组数:463294,关系数330,属性三元组数:341770
          • WD:关系三元组数:448774,关系数220,属性三元组数:779402
        • DBP-YG
          • DBP:关系三元组数:428952,关系数302,属性三元组数:383757
          • YG:关系三元组数:502563,关系数31,属性三元组数:98028
        • (DBP:DBPedia,YG:Yago3,WD:wikidata)
      • 每对有100k个实体对齐连接
      • 度的分布:没有度为1or2的,峰值在4,之后递减
    • SRPRS

      • 认为以前的数据集太稠密了(DBP,DWY),度的分布偏离现实
      • 跨语言:
        • EN-FR,
          • EN:关系三元组数:36508,关系数221,属性三元组数:60800
          • FR:关系三元组数:33532,关系数177,属性三元组数:53045
        • EN-DE
          • EN:关系三元组数:38363,关系数220,属性三元组数:55580
          • DE:关系三元组数:37377,关系数120,属性三元组数:73753
      • 单语言:
        • DBP-WD,
          • DBP:关系三元组数:33421,关系数253,属性三元组数:64021
          • WD:关系三元组数:40159,关系数144,属性三元组数:133371
        • DBP-YG
          • DBP:关系三元组数:33748,关系数223,属性三元组数:58853
          • YG:关系三元组数:36569,关系数30,属性三元组数:18241
      • 每种有15k个实体对齐连接
      • 度的分布:很现实
        • 度小的实体多(精心取样)
    • EN-FR

    • DBP-FB(An Experimental Study of State-of-the-Art Entity Alignment Approaches)

      • DBP: 关系三元组数:96414,关系数407,属性三元组数:127614
      • FB:关系三元组数:111974,关系数882,属性三元组数:78740
  • 度的分布

    实体对齐汇总_第1张图片
    实体对齐汇总_第2张图片

  • EN-FR的统计
    实体对齐汇总_第3张图片

3.4 数据预处理技术

3.5 索引

  • 分区索引:过滤掉不可能匹配的实体对,降低计算复杂度,避免数据库规模二次增长

3.6 对齐

3.6.1 按属性相似度/文本相似度做:成对实体对齐

  • 传统概率模型:
    • 基于属性相似度评分–>三分类:匹配,可能匹配,不匹配
    • 也可用01
  • 机器学习的模型
    • 根据实体属性构建向量
    • 方法:决策树、SVM等分类模型
    • 优点:自动拟合属性间的组合关系和对应程度,减少人为介入
    • 可引入无监督、半监督
  • 文本匹配/语义匹配
    • 文本特征明显的实体匹配
    • 实体简介很长的那种
    • Bert什么的

3.6.2 协同对齐:考虑不同实体间的关联

在属性相似度基础上考虑了结构相似度

3.6.2.1 局部实体对齐

  • 计算相似度
    • 考虑邻居的属性(带匹配实体对的邻居属性集合)
    • 但不把邻居节点当做平等的实体去计算结构相似性
    • 计算
      • s i m ( e i , e j ) = α ⋅ s i m a t t r ( e i , e j ) + ( 1 − α ) ⋅ s i m N B ( e i , e j ) 实 体 本 身 的 相 似 度 : s i m a t t r ( e i , e j ) = Σ ( a 1 , a 2 ) ∈ A t t r ( e i , e j ) s i m ( a 1 , a 2 ) 实 体 关 联 实 体 相 似 度 s i m N B ( e i , e j ) = Σ ( e i ′ , e j ′ ) ∈ N B ( e i , e j ) s i m a t t r ( e i ′ , e j ′ ) sim(e_i,e_j)=\alpha \cdot sim_{attr}(e_i,e_j)+(1-\alpha)\cdot sim_{NB}(e_i,e_j)\\ 实体本身的相似度:sim_{attr}(e_i,e_j)=\Sigma_{(a_1,a_2)\in Attr(e_i,e_j)}sim(a_1,a_2)\\ 实体关联实体相似度sim_{NB}(e_i,e_j)=\Sigma_{(e_i',e_j')\in NB(e_i,e_j) sim_{attr}(e_i',e_j')} sim(ei,ej)=αsimattr(ei,ej)+(1α)simNB(ei,ej)simattr(ei,ej)=Σ(a1,a2)Attr(ei,ej)sim(a1,a2)simNB(ei,ej)=Σ(ei,ej)NB(ei,ej)simattr(ei,ej)

3.6.2.2 全局实体对齐

  • 通过不同匹配策略之间相互影响调整实体之间的相似度
  • 基于相似度传播的方法
    • 基本思想:通过seed alignment以bootstrapping的方式迭代的产生一些新的匹配
    • 半监督?
  • 基于概率模型的方法
    • 基本思想:全局概率最大化。通过为实体匹配关系和匹配决策决策复杂的概率模型,来避免bootstrapping–需要人工参与
    • 基本方法:贝叶斯网络/LDA/CRF/Markov

3.6.3 基于embedding的方法分类

A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs
<-分类来源

  • Embedding Module

    • 关系嵌入
      • triple embedding:transE
      • Path:路径上的长期依赖
      • Neighbor:GCN
    • 属性嵌入
      • 属性
      • literal
  • Interaction Mode

    • Combination mode
      • transformation:学习映射M
      • embedding space Calibration:嵌入到同一空间
      • parameter sharing:同一向量表示
      • parameter swapping: ( e 1 , e 2 ) ∈ S ′ , 则 ( e 1 , r 1 , e 1 ′ ) − > ( e 2 , r 1 , e 1 ′ ) (e_1,e_2)\in S',则(e_1,r_1,e_1')->(e_2,r_1,e_1') (e1,e2)S,(e1,r1,e1)>(e2,r1,e1)
    • learning
      • 监督
      • 半监督
      • 无监督
  • Embedding

    • transE
    • GCN
  • Alignment

    • 2个向量映射到一个空间
    • 训练一个相同的向量
    • Transition
    • Corpus-fusion
    • Margin-based
    • Graph matching
    • Attribution refined
  • Prediction:

    • 相似度计算:
      • cosine
      • euclidean
      • Manhattan distance
  • Extra information Module

    • 用以增强EA
    • 方法
      • bootstrapping(or self-learning:
        • 利用置信度高的对齐结果加入训练数据(下个iteration)
      • multi-type literal information
        • 属性
        • 实体描述
        • 实体名
        • 完善KG的结构
  • 模块级别的比较

    • 在个模块下介绍各方法如何实现该模块

4.开源代码

  • OpenEA
    • 开源的embedding pipeline组件库

5.效果比较

  • EN-FR
  • DBP15k zh-en/dbp15k fr-en/ja-en效果比较

6.使用场景

  • 单语言/多语言
  • 稀疏/稠密
  • 大规模/中等规模
  • 1v1/多对多
    • 1v1:BootEA

7. 实验效果

7.1 DBP15k

  • DBP15k

实体对齐汇总_第4张图片

  • DBP15k
    • 组1:仅用结构
      组2:用bootstrapping
      组3:+其他信息
      实体对齐汇总_第5张图片

7.2EN-FR

  • EN-FR: A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphsh
    实体对齐汇总_第6张图片

7.3 SRPRS

  • SRPRS
    • 组1:仅用结构
      组2:用bootstrapping
      组3:+其他信息
      实体对齐汇总_第7张图片

7.4 DWY100k

参考文献

部分参考未列出

  1. A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphsh

你可能感兴趣的:(知识图谱,表示学习,知识图谱,机器学习,人工智能)