void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr,
const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features,
int count, CvSize win_size, int level, char* status,
float* track_error, CvTermCriteria criteria, int flags );
prev
在时间 t 的第一帧
curr
在时间 t + dt 的第二帧
prev_pyr
第一帧的金字塔缓存. 如果指针非 NULL , 则缓存必须有足够的空间来存储金字塔从层 1 到层 #level 的内容。尺寸 (image_width+8)*image_height/3 比特足够了
curr_pyr
与 prev_pyr 类似, 用于第二帧
prev_features
需要发现光流的点集
curr_features
包含新计算出来的位置的 点集
count
特征点的数目
win_size
每个金字塔层的搜索窗口尺寸
level
最大的金字塔层数。如果为 0 , 不使用金字塔 (即金字塔为单层), 如果为 1 , 使用两层,下面依次类推。
status
数组。如果对应特征的光流被发现,数组中的每一个元素都被设置为 1, 否则设置为 0。
error
双精度数组,包含原始图像碎片与移动点之间的差。为可选参数,可以是 NULL .
criteria
准则,指定在每个金字塔层,为某点寻找光流的迭代过程的终止条件。
flags
其它选项:
- CV_LKFLOW_PYR_A_READY , 在调用之前,第一帧的金字塔已经准备好
- CV_LKFLOW_PYR_B_READY , 在调用之前,第二帧的金字塔已经准备好
- CV_LKFLOW_INITIAL_GUESSES , 在调用之前,数组 B 包含特征的初始坐标 (Hunnish: 在本节中没有出现数组 B,不知是指的哪一个)
函数 cvCalcOpticalFlowPyrLK 实现了金字塔中 Lucas-Kanade 光流计算的稀疏迭代版本 ([Bouguet00])。 它根据给出的前一帧特征点坐标计算当前视频帧上的特征点坐标。 函数寻找具有子象素精度的坐标值。
两个参数 prev_pyr 和 curr_pyr 都遵循下列规则: 如果图像指针为 0, 函数在内部为其分配缓存空间,计算金字塔,然后再处理过后释放缓存。 否则,函数计算金字塔且存储它到缓存中,除非设置标识 CV_LKFLOW_PYR_A[B]_READY 。 图像应该足够大以便能够容纳 Gaussian 金字塔数据。调用函数以后,金字塔被计算而且相应图像的标识可以被设置,为下一次调用准备就绪 (比如:对除了第一个图像的所有图像序列,标识 CV_LKFLOW_PYR_A_READY 被设置).
#include
#include
#include
#include
const int MAX_CORNERS = 500;
int main(int argc, char** argv) {
IplImage* imgA = cvLoadImage("OpticalFlow0.jpg",CV_LOAD_IMAGE_GRAYSCALE);
IplImage* imgB = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_GRAYSCALE);
CvSize img_sz = cvGetSize( imgA );
int win_size = 10;
IplImage* imgC = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_UNCHANGED);
//需要做的第一件事就是获取我们想要跟踪的特征
IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
int corner_count = MAX_CORNERS;
CvPoint2D32f* cornersA = new CvPoint2D32f[ MAX_CORNERS ];
cvGoodFeaturesToTrack(
imgA,
eig_image,
tmp_image,
cornersA,
&corner_count,
0.01,
5.0,
0,
3,
0,
0.04
);
cvFindCornerSubPix(
imgA,
cornersA,
corner_count,
cvSize(win_size,win_size),
cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
);
char features_found[ MAX_CORNERS ];
float feature_errors[ MAX_CORNERS ];
CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );
IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ];
cvCalcOpticalFlowPyrLK( //在图像金字塔中计算LK光流
imgA,
imgB,
pyrA,
pyrB,
cornersA,
cornersB,
corner_count,
cvSize( win_size,win_size ),
5,
features_found,
feature_errors,
cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ),
0
);
for( int i=0; i550 ) {
printf("Error is %f/n",feature_errors[i]);
continue;
}
printf("Got it/n");
CvPoint p0 = cvPoint(
cvRound( cornersA[i].x ),
cvRound( cornersA[i].y )
);
CvPoint p1 = cvPoint(
cvRound( cornersB[i].x ),
cvRound( cornersB[i].y )
);
cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 );
}
cvNamedWindow("ImageA",0);
cvNamedWindow("ImageB",0);
cvNamedWindow("LKpyr_OpticalFlow",0);
cvShowImage("ImageA",imgA);
cvShowImage("ImageB",imgB);
cvShowImage("LKpyr_OpticalFlow",imgC);
cvWaitKey(0);
return 0;
}
运行结果