代码搬用自:https://github.com/open-mmlab/mmdetection/issues/588
1. 在mmdet/models/backbones
中新建senet.py
,加入以下内容:
from __future__ import print_function, division, absolute_import
from collections import OrderedDict
import math
from ..registry import BACKBONES
import torch.nn as nn
from torch.utils import model_zoo
from mmcv.runner import load_checkpoint
import logging
"""
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py
"""
"""
ResNet code gently borrowed from
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""
__all__ = ['SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152',
'se_resnext50_32x4d', 'se_resnext101_32x4d']
pretrained_settings = {
'senet154': {
'imagenet': {
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
}
class SEModule(nn.Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
@property
def _freeze_stages(self):
if self.frozen_stages >= 0:
for m in [self.layer0]:
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, 'layer{}'.format(i))
m.eval()
for param in m.parameters():
param.requires_grad = False
class Bottleneck(nn.Module):
"""
Base class for bottlenecks that implements `forward()` method.
"""
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = self.se_module(out) + residual
out = self.relu(out)
return out
class SEBottleneck(Bottleneck):
"""
Bottleneck for SENet154.
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None):
super(SEBottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes * 2)
self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3,
stride=stride, padding=1, groups=groups,
bias=False)
self.bn2 = nn.BatchNorm2d(planes * 4)
self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1,
bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNetBottleneck(Bottleneck):
"""
ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
implementation and uses `stride=stride` in `conv1` and not in `conv2`
(the latter is used in the torchvision implementation of ResNet).
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None):
super(SEResNetBottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,
stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1,
groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNeXtBottleneck(Bottleneck):
"""
ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None, base_width=4):
super(SEResNeXtBottleneck, self).__init__()
width = math.floor(planes * (base_width / 64)) * groups
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False,
stride=1)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
bottleneck_dic = {
'SEBottleneck': SEBottleneck,
'SEResNetBottleneck': SEResNetBottleneck,
'SEResNeXtBottleneck': SEResNeXtBottleneck
}
@BACKBONES.register_module
class SENet(nn.Module):
def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
inplanes=128, input_3x3=True, downsample_kernel_size=3,
downsample_padding=1, num_classes=1000):
"""
Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `last_linear` layer.
- For all models: 1000
"""
super(SENet, self).__init__()
block = bottleneck_dic[block]
self.inplanes = inplanes
if input_3x3:
layer0_modules = [
('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
bias=False)),
('bn1', nn.BatchNorm2d(64)),
('relu1', nn.ReLU(inplace=True)),
('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
bias=False)),
('bn2', nn.BatchNorm2d(64)),
('relu2', nn.ReLU(inplace=True)),
('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
bias=False)),
('bn3', nn.BatchNorm2d(inplanes)),
('relu3', nn.ReLU(inplace=True)),
]
else:
layer0_modules = [
('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
padding=3, bias=False)),
('bn1', nn.BatchNorm2d(inplanes)),
('relu1', nn.ReLU(inplace=True)),
]
# To preserve compatibility with Caffe weights `ceil_mode=True`
# is used instead of `padding=1`.
layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
ceil_mode=True)))
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
self.layer1 = self._make_layer(
block,
planes=64,
blocks=layers[0],
groups=groups,
reduction=reduction,
downsample_kernel_size=1,
downsample_padding=0
)
self.layer2 = self._make_layer(
block,
planes=128,
blocks=layers[1],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer3 = self._make_layer(
block,
planes=256,
blocks=layers[2],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer4 = self._make_layer(
block,
planes=512,
blocks=layers[3],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
# self.avg_pool = nn.AvgPool2d(7, stride=1)
# self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
# self.last_linear = nn.Linear(512 * block.expansion, num_classes)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
downsample_kernel_size=1, downsample_padding=0):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=downsample_kernel_size, stride=stride,
padding=downsample_padding, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, groups, reduction, stride,
downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, groups, reduction))
return nn.Sequential(*layers)
def features(self, x):
outputs = []
x = self.layer0(x)
x = self.layer1(x)
outputs.append(x)
x = self.layer2(x)
outputs.append(x)
x = self.layer3(x)
outputs.append(x)
x = self.layer4(x)
outputs.append(x)
return x, outputs
'''
def logits(self, x):
x = self.avg_pool(x)
if self.dropout is not None:
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.last_linear(x)
return x
'''
def forward(self, x):
x, outputs = self.features(x)
# x = self.logits(x)
return outputs # x
def train(self, mode=True):
super(SENet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, (nn.BatchNorm2d)):
m.eval()
# def initialize_pretrained_model(model, num_classes, settings):
# assert num_classes == settings['num_classes'], \
# 'num_classes should be {}, but is {}'.format(
# settings['num_classes'], num_classes)
# model.load_state_dict(model_zoo.load_url(settings['url']))
# model.input_space = settings['input_space']
# model.input_size = settings['input_size']
# model.input_range = settings['input_range']
# model.mean = settings['mean']
# model.std = settings['std']
# def senet154(num_classes=1000, pretrained='imagenet'):
# model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
# dropout_p=0.2, num_classes=num_classes)
# if pretrained is not None:
# settings = pretrained_settings['senet154'][pretrained]
# initialize_pretrained_model(model, num_classes, settings)
# return model
2. 在mmdet/models/backbones
中把__init__.py
改为:
from .resnet import ResNet, make_res_layer
from .resnext import ResNeXt
from .ssd_vgg import SSDVGG
from .hrnet import HRNet
from .senet import SENet
__all__ = ['ResNet', 'make_res_layer', 'ResNeXt', 'SSDVGG', 'HRNet', 'SENet']
主要是上面的第五行和第七行,加入SENet
。
3. 使用SENet-154
作为backbone训练retinanet
:
以configs/retinanet_x101_32x4d_fpn_1x.py
为例,
把开头的
model = dict(
type='RetinaNet',
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
改为:
model = dict(
type='RetinaNet',
pretrained='work_dirs/pre_train/senet154-c7b49a05.pth',
backbone=dict(
type='SENet',
block='SEBottleneck', layers=[3, 8, 36, 3], groups=64, reduction=16,
dropout_p=0.2, num_classes=81
),
然后在mmdetection主目录下新建文件夹work_dirs/pre_train/
,进入该目录执行命令:
wget -c http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth
最后执行:
./tools/dist_train.sh configs/retinanet_se154_fpn_1x.py 4 --validate
即可开始训练,这里可以把4改为实际GPU数目,也要相应修改lr,公式lr = base_lr / 8 x num_gpus x img_per_gpu / 2
。其中base_lr
是原生config文件中的学习率,在retinanet
中base_lr = 0.01
,其他好多模型中base_lr = 0.02
。
结果
在coco2017
训练了两轮,结果如下:
DONE (t=17.02s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.201
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.208
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.110
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.234
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.266
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.233
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.371
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.390
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.208
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414
不过现在算力卡死,batchsize
设为1时BN失效,又是单阶段模型,效果不太好。
整理代码见:https://github.com/qixuxiang/mmdetection_with_SENet154。