mmdetection加入SENet-154 backbone

代码搬用自:https://github.com/open-mmlab/mmdetection/issues/588

1.mmdet/models/backbones中新建senet.py,加入以下内容:

from __future__ import print_function, division, absolute_import
from collections import OrderedDict
import math
from ..registry import BACKBONES
import torch.nn as nn
from torch.utils import model_zoo
from mmcv.runner import load_checkpoint
import logging
"""
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py
"""
"""
ResNet code gently borrowed from
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""

__all__ = ['SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152',
           'se_resnext50_32x4d', 'se_resnext101_32x4d']

pretrained_settings = {
    'senet154': {
        'imagenet': {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
}


class SEModule(nn.Module):

    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
                             padding=0)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
                             padding=0)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x

@property
def _freeze_stages(self):
    if self.frozen_stages >= 0:
        for m in [self.layer0]:
            m.eval()
            for param in m.parameters():
                param.requires_grad = False
    for i in range(1, self.frozen_stages + 1):
        m = getattr(self, 'layer{}'.format(i))
        m.eval()
        for param in m.parameters():
            param.requires_grad = False

class Bottleneck(nn.Module):
    """
    Base class for bottlenecks that implements `forward()` method.
    """

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = self.se_module(out) + residual
        out = self.relu(out)

        return out


class SEBottleneck(Bottleneck):
    """
    Bottleneck for SENet154.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes * 2)
        self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3,
                               stride=stride, padding=1, groups=groups,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes * 4)
        self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNetBottleneck(Bottleneck):
    """
    ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
    implementation and uses `stride=stride` in `conv1` and not in `conv2`
    (the latter is used in the torchvision implementation of ResNet).
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEResNetBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,
                               stride=stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1,
                               groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNeXtBottleneck(Bottleneck):
    """
    ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None, base_width=4):
        super(SEResNeXtBottleneck, self).__init__()
        width = math.floor(planes * (base_width / 64)) * groups
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False,
                               stride=1)
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
                               padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


bottleneck_dic = {
    'SEBottleneck': SEBottleneck,
    'SEResNetBottleneck': SEResNetBottleneck,
    'SEResNeXtBottleneck': SEResNeXtBottleneck
}


@BACKBONES.register_module
class SENet(nn.Module):

    def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
                 inplanes=128, input_3x3=True, downsample_kernel_size=3,
                 downsample_padding=1, num_classes=1000):
        """
        Parameters
        ----------
        block (nn.Module): Bottleneck class.
            - For SENet154: SEBottleneck
            - For SE-ResNet models: SEResNetBottleneck
            - For SE-ResNeXt models:  SEResNeXtBottleneck
        layers (list of ints): Number of residual blocks for 4 layers of the
            network (layer1...layer4).
        groups (int): Number of groups for the 3x3 convolution in each
            bottleneck block.
            - For SENet154: 64
            - For SE-ResNet models: 1
            - For SE-ResNeXt models:  32
        reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
            - For all models: 16
        dropout_p (float or None): Drop probability for the Dropout layer.
            If `None` the Dropout layer is not used.
            - For SENet154: 0.2
            - For SE-ResNet models: None
            - For SE-ResNeXt models: None
        inplanes (int):  Number of input channels for layer1.
            - For SENet154: 128
            - For SE-ResNet models: 64
            - For SE-ResNeXt models: 64
        input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
            a single 7x7 convolution in layer0.
            - For SENet154: True
            - For SE-ResNet models: False
            - For SE-ResNeXt models: False
        downsample_kernel_size (int): Kernel size for downsampling convolutions
            in layer2, layer3 and layer4.
            - For SENet154: 3
            - For SE-ResNet models: 1
            - For SE-ResNeXt models: 1
        downsample_padding (int): Padding for downsampling convolutions in
            layer2, layer3 and layer4.
            - For SENet154: 1
            - For SE-ResNet models: 0
            - For SE-ResNeXt models: 0
        num_classes (int): Number of outputs in `last_linear` layer.
            - For all models: 1000
        """
        super(SENet, self).__init__()
        block = bottleneck_dic[block]
        self.inplanes = inplanes
        if input_3x3:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
                                    bias=False)),
                ('bn1', nn.BatchNorm2d(64)),
                ('relu1', nn.ReLU(inplace=True)),
                ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn2', nn.BatchNorm2d(64)),
                ('relu2', nn.ReLU(inplace=True)),
                ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn3', nn.BatchNorm2d(inplanes)),
                ('relu3', nn.ReLU(inplace=True)),
            ]
        else:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
                                    padding=3, bias=False)),
                ('bn1', nn.BatchNorm2d(inplanes)),
                ('relu1', nn.ReLU(inplace=True)),
            ]
        # To preserve compatibility with Caffe weights `ceil_mode=True`
        # is used instead of `padding=1`.
        layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
                                                    ceil_mode=True)))
        self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
        self.layer1 = self._make_layer(
            block,
            planes=64,
            blocks=layers[0],
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=1,
            downsample_padding=0
        )
        self.layer2 = self._make_layer(
            block,
            planes=128,
            blocks=layers[1],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer3 = self._make_layer(
            block,
            planes=256,
            blocks=layers[2],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer4 = self._make_layer(
            block,
            planes=512,
            blocks=layers[3],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        # self.avg_pool = nn.AvgPool2d(7, stride=1)
        # self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
        # self.last_linear = nn.Linear(512 * block.expansion, num_classes)
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)

    def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
                    downsample_kernel_size=1, downsample_padding=0):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=downsample_kernel_size, stride=stride,
                          padding=downsample_padding, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, groups, reduction, stride,
                            downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups, reduction))

        return nn.Sequential(*layers)

    def features(self, x):
        outputs = []
        x = self.layer0(x)
        x = self.layer1(x)
        outputs.append(x)
        x = self.layer2(x)
        outputs.append(x)
        x = self.layer3(x)
        outputs.append(x)
        x = self.layer4(x)
        outputs.append(x)
        return x, outputs
    '''    
    def logits(self, x):
        x = self.avg_pool(x)
        if self.dropout is not None:
            x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.last_linear(x)
        return x
    '''
    def forward(self, x):
        x, outputs = self.features(x)
        # x = self.logits(x)
        return outputs  # x

def train(self, mode=True):
    super(SENet, self).train(mode)
    if mode and self.norm_eval:
        for m in self.modules():
            # trick: eval have effect on BatchNorm only
            if isinstance(m, (nn.BatchNorm2d)):
                m.eval()

# def initialize_pretrained_model(model, num_classes, settings):
#     assert num_classes == settings['num_classes'], \
#         'num_classes should be {}, but is {}'.format(
#             settings['num_classes'], num_classes)
#     model.load_state_dict(model_zoo.load_url(settings['url']))
#     model.input_space = settings['input_space']
#     model.input_size = settings['input_size']
#     model.input_range = settings['input_range']
#     model.mean = settings['mean']
#     model.std = settings['std']


# def senet154(num_classes=1000, pretrained='imagenet'):
#     model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
#                   dropout_p=0.2, num_classes=num_classes)
#     if pretrained is not None:
#         settings = pretrained_settings['senet154'][pretrained]
#         initialize_pretrained_model(model, num_classes, settings)
#     return model

2.mmdet/models/backbones中把__init__.py改为:

from .resnet import ResNet, make_res_layer
from .resnext import ResNeXt
from .ssd_vgg import SSDVGG
from .hrnet import HRNet
from .senet import SENet

__all__ = ['ResNet', 'make_res_layer', 'ResNeXt', 'SSDVGG', 'HRNet', 'SENet']

主要是上面的第五行和第七行,加入SENet

3. 使用SENet-154作为backbone训练retinanet:

configs/retinanet_x101_32x4d_fpn_1x.py为例,

把开头的

model = dict(
    type='RetinaNet',
    pretrained='open-mmlab://resnext101_32x4d',
    backbone=dict(
        type='ResNeXt',
        depth=101,
        groups=32,
        base_width=4,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
style='pytorch'),

改为:

model = dict(
    type='RetinaNet',
    pretrained='work_dirs/pre_train/senet154-c7b49a05.pth',
    backbone=dict(
        type='SENet',
        block='SEBottleneck', layers=[3, 8, 36, 3], groups=64, reduction=16,
        dropout_p=0.2, num_classes=81
),

然后在mmdetection主目录下新建文件夹work_dirs/pre_train/,进入该目录执行命令:

wget -c http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth

最后执行:

./tools/dist_train.sh configs/retinanet_se154_fpn_1x.py 4 --validate

即可开始训练,这里可以把4改为实际GPU数目,也要相应修改lr,公式lr = base_lr / 8 x num_gpus x img_per_gpu / 2。其中base_lr是原生config文件中的学习率,在retinanetbase_lr = 0.01,其他好多模型中base_lr = 0.02

结果

coco2017训练了两轮,结果如下:

DONE (t=17.02s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.201
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.346
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.208
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.110
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.234
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.266
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.371
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.390
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.208
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414

不过现在算力卡死,batchsize设为1时BN失效,又是单阶段模型,效果不太好。

整理代码见:https://github.com/qixuxiang/mmdetection_with_SENet154。

你可能感兴趣的:(mmdetection,计算机视觉,PyTorch,深度学习框架)