pytorch入门笔记

pytorch的使用【入门级】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文

文章目录

    • pytorch的使用【入门级】
  • 一、数据集
    • 1.tensorboard(数据可视化)
    • 2.tensorforms(数据处理)
    • 3.torchvision(数据集下载)
    • 4.dataloade
  • 二、pytorch模型介绍
    • 1.卷积
      • 1.1卷积在数字上的应用
      • 1.2卷积在图片上的应用
    • 2.池化
      • 2.1池化在数字上的应用
      • 2.2池化在图片上的应用
    • 3.非线性激活
      • 3.1非线性激活在数字上的应用
      • 3.2非线性激活在图片上的应用
    • 4.全连接层
      • 4.1全连接层在数字上的应用
      • 4.2全连接层在图片上的应用
    • 5.损失函数(附带反向传播)
      • 5.1损失函数在数字上的应用
      • 5.2损失函数在图片上的应用
    • 6.梯度优化(优化器)
    • 7.模型的制作以及对先有模型的修改、调用、保存
      • 7.1模型的制作(附带模型结构可视化)
      • 7.2现有的模型的保存与调用
      • 7.3现有的模型修改
  • 三、pytorch完整模型
    • 1.利用GPU训练模型
    • 2.验证上面训练好的模型


一、数据集

1.tensorboard(数据可视化)

tensorboard主要将数据可视化,包括图片、公式、模型结构可视化

代码:

from torch.utils.tensorboard import SummaryWriter, writer
import numpy as np
from PIL import Image

#创建一个logs的文件夹
writer = SummaryWriter("logs")

#创建需要导入的图片(文件)路径
image_path = r'D:\pytorch\tensor\dataset\train\ants_image\0013035.jpg'
img_PIL = Image.open( image_path)

#将图片从PIL格式转化成tensor格式
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

#将图片在tensorboard中以test的名字可视化处来
writer.add_image("test",img_array,1,dataformats='HWC')

#也可以在tensorboard中绘制数学函数
for i in range(100):
    writer.add_scalar("y=2x",3*i,i)
#结束
writer.close()

在后台输入:tensorboard --logdir=‘D:\pytorch\tensor\logs’
(后面用到tensorboard来可视化数据,都需要在后台输入tensorboard --logdir='D:\pytorch\tensor\logs’来查看,注意logdir的路径随着命名的变化而变化,在后面介绍就不一一列举)

请添加图片描述

效果:

pytorch入门笔记_第1张图片
pytorch入门笔记_第2张图片

2.tensorforms(数据处理)

tensorforms主要改变数据的格式,大小等
以图片为例:图片格式以及对应打开方式有三种
1,PIL-----Image.open()
2,tensor------ToTensor()
3,narrrays------cv.imread()

代码:

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter, writer

#将图片PIL转成tensor类型
writer = SummaryWriter("logs")
img_path = r'D:\pytorch\tensor\dataset\train\ants_image\0013035.jpg'
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

#绘制图片
writer.add_image("tensor_img",tensor_img)

#将图片tensor类型进行归一化处理[normalize]
#add_image(2)是生成第二张图片
trans_norm = transforms.Normalize([0.6,0.8,0.7],[0.7,0.8,1])
img_norm = trans_norm(tensor_img)
#绘制图片
writer.add_image('normalize',img_norm,2)

#改变图片的分辨率[resize]
#resize需要用到图片的PIL格式,输入图像用变量IMG即可
print(img.size)
trans_resize = transforms.Resize((512,512))
img_size = trans_resize(img)
print((img_size).size)
#将img_size从pil变成totensor格式,方便writer绘图
img_size = tensor_trans(img_size)
#绘制图片
writer.add_image('resize',img_size,0)

#利用组合compose()完成等比缩放
#compose(1,2),即在完成方法1后,在完成方法2,将两种方法合并在一起(注意,1,是列表形式,2,具有顺序)
trans_resize_2 = transforms.Resize(512)
#在这里,在pil格式下完成大小改变-----再将图片变成tensor格式
trans_compose = transforms.Compose([trans_resize_2,tensor_trans])
img_size_2 = trans_compose(img)
print(trans_resize_2)
writer.add_image('compose',img_size_2,1)

#中心裁剪CenterCrop
trans_resize_3 = transforms.CenterCrop((512,512))
trans_compose_3 = transforms.Compose([trans_resize_3,tensor_trans])
img_size_3 = trans_compose_3(img)
writer.add_image("centercrop",img_size_3)

#填充pad
trans_resize_4 = transforms.Pad([10,20,3,4])
trans_compose_4 = transforms.Compose([trans_resize_4,tensor_trans])
img_size_4 = trans_compose_4(img)
writer.add_image("pad",img_size_4,0)

#随机裁剪RandomCrop
trans_resize_5 = transforms.RandomCrop([512,512])
trans_compose_5 = transforms.Compose([trans_resize_5,tensor_trans])
for i in range(10):
    img_size_5 = trans_compose_5(img)
    writer.add_image("randomcrop",img_size_5,i)

writer.close()

效果:
pytorch入门笔记_第3张图片
pytorch入门笔记_第4张图片
pytorch入门笔记_第5张图片
pytorch入门笔记_第6张图片

3.torchvision(数据集下载)

torchvision有很多功能,现在主要介绍torchvision.datasets

代码:

import torchvision
from torch.utils.tensorboard import SummaryWriter

#将数据集的数据转化成tensor格式
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

#root是路径,(./)是在当前文件下创建文件夹,(../)是在上级文件下创建文件夹
#train=True,是下载训练集。train=false,是下载测试集
#download=true,则从 Internet 下载数据集并将其放在根目录中。 如果已下载数据集,则不会再次下载。。
train_set = torchvision.datasets.CIFAR10(root="./cifardt",train=True,transform=dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./cifardt",train=False,transform=dataset_transform,download=True)
print(test_set[0])

#创建文件夹将图片可视化
writer = SummaryWriter('p10')

#读取测试集前十个图片
for i in range(10):
    img,target = test_set[i]
    writer.add_image('test',img,i)

writer.close()

效果:
pytorch入门笔记_第7张图片

4.dataloade

dataset与dataloader的区别,如图:pytorch入门笔记_第8张图片

代码:

import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#将数据集的数据转化成tensor格式
train_set = torchvision.datasets.CIFAR10(root="./cifardt",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_set = torchvision.datasets.CIFAR10(root="./cifardt",train=False,transform=torchvision.transforms.ToTensor(),download=True)

#batch_size=4每步读取4张图片
#shuffle意味着第二次读取数据时候是否重新打乱,true=打乱
#num_workers=0,单线程
#drop_last=True:总的图片数量除以batch-size的余数是否舍弃,true=舍弃
test_loader = DataLoader(dataset=test_set,batch_size=64,shuffle=True,num_workers=0,drop_last=True)

#创建文件夹将图片可视化
writer = SummaryWriter('p11')

#读取两轮数据集
for epoch in range(2):
    #读取数据集
    step=0
    for data in test_loader:
        imgs,targets = data
        #每一轮重新给文件夹命名
        #特别注意,这里是add_images,不是add_image。多加一个s
        writer.add_images('epoch:{}'.format(epoch),imgs,step)
        step+=1
    writer.close()

效果:
pytorch入门笔记_第9张图片

二、pytorch模型介绍

1.卷积

卷积的作用是提取特征

1.1卷积在数字上的应用

代码如下(示例):

import torch
import torch.nn.functional as F
input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]])

kernel = torch.tensor([[1,2,1],
                       [0,1,0],
                       [2,1,0]])
print(input.shape)
print(kernel.shape)

#由于conv需要四维参数,需要reshape一下
#将二维参数(宽,高)--四维参数(batch_size,通道数,宽,高)
#batch_size是每次送入神经网络的图片数量
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
print(input.shape)
print(kernel.shape)

#调用conv2d,全称是torch.nn.functional.conv2d
#这里的权重weight,就等于卷积核
output = F.conv2d(input,kernel,stride=1)
#输出的宽和高计算公式:输出=输入-卷积核/strido+1
print(output.shape)

#练习stride的作用
output_2 = F.conv2d(input,kernel,stride=2)
print(output_2.shape)

#练习padding的作用
output_3 = F.conv2d(input,kernel,stride=1,padding=1)
print(output_3.shape)
#padding=1,对输入的每条(宽+高)都多填充维度为一的0
#例如本例中,input=【5*5】--【7*7】,最后输出维度为7-3/1-1=5  output=【5*5】.使得input=output

数据变化如下:

torch.Size([5, 5])
torch.Size([3, 3])
torch.Size([1, 1, 5, 5])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 2, 2])
torch.Size([1, 1, 5, 5])

1.2卷积在图片上的应用

代码如下(示例):

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root="./cifardt",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset=dataset,batch_size=64)

class NN(nn.Module):
    def __init__(self):
        # super(NN,self).__init__()
        super(NN,self).__init__()
        self.conv2 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1)

    def forward(self,x):
        x = self.conv2(x)
        return x

writer = SummaryWriter('p12')
model = NN()
i=0
for data in dataloader:
    imgs,targets = data
    #由于forward是个魔法方法__call__,前向传播
    #在这里等同于:output = nn.forward(imgs)
    output = model(imgs)
    i+=1
    #注意这里是add_images,后面有个s
    #torch.size([64,3,32,32])
    writer.add_images('input1',imgs,i)
    
    # torch.size([64,3,32,32]) ->[xxx,3,30,30]
    #将6通道变成3通道,bize_size会增加,但具体不知道增加多少,所以前面设置为-1,来自动计算batchsize的大小 ->(-1,3,30,30)
    output = torch.reshape(output,(-1,3,30,30))
    writer.add_images('output1', output, i)

writer.close()

数据变化如下:
pytorch入门笔记_第10张图片
pytorch入门笔记_第11张图片

2.池化

池化的作用;对数据进行收集(多变少)并总结(最大值或者平均值)

2.1池化在数字上的应用

代码如下(示例):

import torch
import torch.nn.functional as F

#这里需要将矩阵转化成浮点数
input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]],dtype=torch.float32)

input = torch.reshape(input,(1,1,5,5))
print(input.shape)
#这里介绍一下torch.nn与torch.nn.functional 的区别
#如果用torch.nn。则需要重新建class,如下图所示
#建好组后,在调用
# class NN(nn.Module):
#     def __init__(self):
#         super(NN, self).__init__()
#         self.maxpool = MaxPool2d(3,ceil_mode=True)
#     def forward(self,x):
#         output = self.maxpool(x)
#         return output
# model = NN()
# output = model(input)

#torch.nn.functional就相当于以经创建好组了,直接用就好了。
#kernel_size=3----窗口移动的步长
#ceil_mode =True-----计算输出信号大小的时候,会使用向上取整.。反之,向下取整。
output = F.max_pool2d(input,kernel_size=3,ceil_mode =True)
print(output)

数据变化如下:

torch.Size([1, 1, 5, 5])
tensor([[[[2., 3.],
          [5., 1.]]]])

2.2池化在图片上的应用

代码如下(示例):

import torch
import torchvision
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch import nn

dataset= torchvision.datasets.CIFAR10(r'D:\pytorch\tensor\cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class NN(nn.Module):
    def __init__(self):
        super(NN, self).__init__()
        self.maxpool = MaxPool2d(3,ceil_mode=True)

    def forward(self,x):
        output = self.maxpool(x)
        return output
model = NN()
i=0
writer = SummaryWriter('p13')
for data in dataloader:
    imgs,targets = data
    output = model(imgs)
    i+=1
    writer.add_images('input',imgs, i)
    writer.add_images('output',output,i)
writer.close()

数据变化如下:
pytorch入门笔记_第12张图片
pytorch入门笔记_第13张图片

3.非线性激活

非线性激活的作用;对特征进行非线性变换,赋予神经网络深度的意义,提高泛化能力。

3.1非线性激活在数字上的应用

代码如下(示例):

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1,-2],
                      [-2,2]])
print(input.shape)
input = torch.reshape(input,(1,1,2,2))

class NN(nn.Module):
    def __init__(self):
        super(NN, self).__init__()
        #relu,if x<0,print:y=0。if x>=0,print:y=x
        self.relu = ReLU()
    def forward(self,x):
        output = self.relu(x)
        return output

model = NN()
x = model(input)
print(x)
print(x.shape)

数据变化如下:

torch.Size([2, 2])
tensor([[[[1, 0],
          [0, 2]]]])
torch.Size([1, 1, 2, 2])

3.2非线性激活在图片上的应用

代码如下(示例):

import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class NN(nn.Module):
    def __init__(self):
        super(NN, self).__init__()
        self.relu = ReLU()
        self.sigmoid = Sigmoid()
    def forward(self,x):
        output=self.sigmoid(x)
        return output
model = NN()
writer =SummaryWriter('p14')
i=0
for data in dataloader:
    imgs,targets=data
    output = model(imgs)
    #正则化
    m = nn.BatchNorm2d(3,affine=False)
    output1=m(output)
    i+=1
    #原图
    writer.add_images('input',imgs,i)
    #非线性激活后的图
    writer.add_images('output',output,i)
    #正则化后的图
    writer.add_images('output1', output1, i)
writer.close()

数据变化如下:
pytorch入门笔记_第14张图片
pytorch入门笔记_第15张图片
pytorch入门笔记_第16张图片

4.全连接层

全连接层;把卷积层提取的特征加以整合从而进行分类。
(4.2中将imgs整合为一行数据)

4.1全连接层在数字上的应用

代码如下(示例):

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1,-2],
                      [-2,2]])
print(input.shape)
input = torch.reshape(input,(1,1,2,2))

class NN(nn.Module):
    def __init__(self):
        super(NN, self).__init__()
        self.relu = ReLU()
    def forward(self,x):
        output = self.relu(x)
        return output

model = NN()
x = model(input)
print(x)
print(x.shape)

数据变化如下:

torch.Size([2, 2])
tensor([[[[1, 0],
          [0, 2]]]])
torch.Size([1, 1, 2, 2])

4.2全连接层在图片上的应用

代码如下(示例):

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader =DataLoader(dataset,batch_size=64)

class NN(nn.Module):
    def __init__(self):
        super(NN, self).__init__()
        self.linear = Linear(196608,10)

    def forward(self,x):
        output=self.linear(x)
        return output

model =NN()
i=0
for data in dataloader:
    imgs,targets = data
    print(imgs.shape)
    #提示; output = torch.reshape(imgs,(1,1,1,196608))=torch.flatten(imgs)
    output =torch.flatten(imgs)
    print(output.shape)
    output1= model(output)
    print(output1.shape)
    i+=1
writer.close()

数据变化如下:

torch.Size([64, 3, 32, 32])
torch.Size([196608])
torch.Size([10])

5.损失函数(附带反向传播)

损失函数的作用:衡量模型模型预测的好坏。
反向传播的作用:快速算出所有参数的偏导数

5.1损失函数在数字上的应用

代码如下(示例):

import torch
from torch import nn

input = torch.tensor([1,2,3],dtype=torch.float32)
output = torch.tensor([4,3,2],dtype=torch.float32)

#注意,利用nn.loss需要将数据从二维参 ->四维参
input = torch.reshape(input,(1,1,1,3))
output = torch.reshape(output,(1,1,1,3))

#不能写成result =nn.L1Loss(input,output)
#L1Loss默认计算平均绝对误差
loss = nn.L1Loss()
result =loss(input,output)
print(result)

#计算平均方差
loss_mse = nn.MSELoss()
result_mse =loss_mse(input,output)
print(result_mse)

计算结果如下:

tensor(1.6667)
tensor(3.6667)

5.2损失函数在图片上的应用

代码如下(示例):

import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader =DataLoader(dataset,batch_size=64)

class NN(nn.Module):
    #用sequential的模型结构,优化模型
    def __init__(self):
        super(NN, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(64 * 4 * 4, 64),
            Linear(64, 10))
    def forward(self,x):
        x=self.model(x)
        return x
model = NN()

for data in dataloader:
    imgs,targets = data
    output = model(imgs)
    #计算交叉损失
    loss = nn.CrossEntropyLoss()
    loss_l1 = loss(output,targets)
    #反向传播:快速算出所有参数的偏导数
    loss_l1.backward()
    print(loss_l1)

计算结果如下:

tensor(2.2951, grad_fn=<NllLossBackward0>)
tensor(2.3012, grad_fn=<NllLossBackward0>)
tensor(2.3028, grad_fn=<NllLossBackward0>)
tensor(2.3009, grad_fn=<NllLossBackward0>)
.....

6.梯度优化(优化器)

梯度优化的作用;用来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值,从而最小化(或最大化)损失函数

代码如下(示例):

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10('./cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader =DataLoader(dataset,batch_size=64)

class NN(nn.Module):
    #用sequential的模型结构,优化模型
    def __init__(self):
        super(NN, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(64 * 4 * 4, 64),
            Linear(64, 10)

        )
    def forward(self,x):
        x=self.model(x)
        return x

model = NN()
loss = nn.CrossEntropyLoss()
#model.parameters()-----模型的参数
optim = torch.optim.SGD(model.parameters(),lr=0.01)

for epoch in range(20):
    running_loss = 0
    print(epoch)
    for data in dataloader:
        imgs,targets = data
        output = model(imgs)
        #计算交叉损失
        loss_l1 = loss(output,targets)
        #梯度清零
        optim.zero_grad()
        #损失反向传播
        loss_l1.backward()
        #梯度优化
        optim.step()
        running_loss+=loss_l1
    print(running_loss)

计算结果如下:

0
tensor(360.4875, grad_fn=<AddBackward0>)
1
tensor(355.5713, grad_fn=<AddBackward0>)
2
tensor(339.9232, grad_fn=<AddBackward0>)
3
tensor(318.6790, grad_fn=<AddBackward0>)
4
tensor(311.9515, grad_fn=<AddBackward0>)
...
随着epoch的增加,损失不断减少

7.模型的制作以及对先有模型的修改、调用、保存

7.1模型的制作(附带模型结构可视化)

利用sequential的模型结构,来优化模型
可以通过被注释的代码,对比利用sequential的简洁性

例题;根据以下图片,绘制模型结构
pytorch入门笔记_第17张图片
代码如下(示例):

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class NN(nn.Module):
    #用sequential的模型结构,优化模型
    def __init__(self):
        super(NN, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(64 * 4 * 4, 64),
            Linear(64, 10)

        )
    def forward(self,x):
        x=self.model(x)
        return x

    #不用sequential的模型结构
    # def __init__(self):
    #     super(NN, self).__init__()
    #     #前面只算通道,关键计算padding,padding=(kernel_size-1)/2
    #     self.conv1 = Conv2d(in_channels=3,out_channels=32,kernel_size=5,padding=2)
    #     self.maxpool1 = MaxPool2d(2)
    #     self.conv2 = Conv2d(32,32,5,padding=2)
    #     self.maxpool2 = MaxPool2d(2)
    #     self.conv3 =Conv2d(32,64,5,padding=2)
    #     self.maxpool3 = MaxPool2d(2)
    #     #到这里,将向量铺平后,用两个全连接层不断减少向量大小
    #     self.flatten = Flatten()
    #     self.linear1 = Linear(64*4*4,64)
    #     self.linear2 = Linear(64,10)
    #
    # def forward(self,x):
    #     x = self.conv1(x)
    #     x = self.maxpool1(x)
    #     x = self.conv2(x)
    #     x = self.maxpool2(x)
    #     x = self.conv3(x)
    #     x = self.maxpool3(x)
    #     x = self.flatten(x)
    #     x = self.linear1(x)
    #     x = self.linear2(x)
    #     return  x

nn =NN()
input = torch.ones((64,3,32,32))
output = nn(input)
print(output.shape)

#利用tensorboard将模型结构画出来
writer = SummaryWriter('p16')
writer.add_graph(nn,input)
writer.close()

最后,在后台输入

tensorboard --logdir='D:\pytorch\tensor\p16'

通过tensorboard,将模型结构可视化出来:
pytorch入门笔记_第18张图片

7.2现有的模型的保存与调用

代码如下(示例):

import torch
import torchvision

vgg16 = torchvision.models.vgg16(pretrained=False)

#模型的保存方式
torch.save(vgg16.state_dict(),'vgg16_method1.pth')

#模型的调用方式
#注意,已经保存为字典形式,不再是网络模型
model = torch.load('vgg16_method1.pth')
print(model)

#一般用一下方式调用
vgg16.load_state_dict(torch.load('vgg16_method1.pth'))
print(vgg16)

7.3现有的模型修改

修改vgg16最后一层模型

import torchvision
from torch import nn
#只继承模型结构,不继承参数
vgg16_false = torchvision.models.vgg16(pretrained=False)
#继承模型结构和参数
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_true)
# 1,./当前文件夹   2,../上一级文件夹
train_data = torchvision.datasets.CIFAR10('./cifardt',train=True,transform=torchvision.transforms.ToTensor(),download=True)

#将vgg16的classifier下的第(6)out_features=1000改为10(因为CIFAR10只有10类,vgg分别1000类)

#方法一
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,0))
print(vgg16_true)

#方法二
vgg16_false.classifier[6]=nn.Linear(1000,0)
print(vgg16_false)

三、pytorch完整模型

1.利用GPU训练模型

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time
from torch.utils.data import DataLoader

#定义训练设备
device = torch.device('cuda')
#调用gpu:device = torch.device('cuda')
#在不确定有gpu的条件下,可以写成:device = torch.device('cuda' if torch.cuda.is_available() else "cpu")

train_data = torchvision.datasets.CIFAR10('./cifardt',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10('./cifardt',train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_dataloader = DataLoader(train_data,64)
test_dataloader = DataLoader(test_data,64)

train_data_size = len(train_data)
test_data_size = len(test_data)

print('训练数据集长度为:{}'.format(train_data_size))
print('测试数据集长度为:{}'.format(test_data_size))

#创建模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )

    def forward(self,x):
            x = self.model(x)
            return x
#调用模型
#创建模型
model = Model()
model = model.to(device)
#创建损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
#创建优化器.SGD随机梯度下降
learning_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate)
#定义训练次数
total_train_step = 0
#定义训练的轮数
epoch=21
#创建可视化文件夹
writer = SummaryWriter('p17')
#记录开始时间
start_time = time.time()
for i in range(epoch):
    print('-----第{}轮训练开始-----'.format(i+1))
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        output = model(imgs)
        loss = loss_fn(output, targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step += 1
        #每隔100epoch打印一次
        if total_train_step % 100 ==0:
            #记录结束时间
            end_time = time.time()
            print(end_time-start_time)
            #loss.item() --> 将数据由tensor[60],变为60,方便后面将损失可视化
            print('训练次数为:{},损失值为:{}'.format(total_train_step, loss.item()))
            writer.add_scalar('train_loss',loss.item(),total_train_step)
    #定义初始训练损失为0
    total_test_loss = 0
    #定义初始准确率
    total_accuracy = 0
    #定义测试步长
    total_test_step = 0

    for i in range(epoch):
        print('-----第{}轮训练开始-----'.format(i + 1))
        with torch.no_grad():
            for data in test_dataloader:
                imgs, targets = data
                # 利用gpu
                imgs = imgs.to(device)
                targets = targets.to(device)
                output = model(imgs)
                # 计算损失
                loss = loss_fn(output, targets)
                total_test_loss += loss
                # 计算预测正确的个数
                # output.argmax(1):将横坐标得分最多的标签,所对应的标签排序号输出
                # 下面的意思是,求得 预测的位置=与实际的标签位置  的个数求和
                accuracy = (output.argmax(1) == targets).sum()
                accuracy += accuracy
                total_test_step += 1
                if total_test_step % 50 == 0:
                    print('测试步数为;{}'.format(total_test_step))
                    print('----整体的训练损失为{}----'.format(total_test_loss.item()))
                    print('整体测试集的正确率:{}'.format(accuracy / test_data_size))
                    writer.add_scalar('test_loss', loss.item(), total_test_step)
                    writer.add_scalar('accuracy', accuracy / test_data_size, total_test_step)
    #保存模型
    if i%5==0:
        torch.save(model,'model_{}.pth'.format(i))
        print('模型以保存')

writer.close()     

可以看到训练的pth文件
pytorch入门笔记_第19张图片

在后台输入:

 tensorboard --logdir='D:\pytorch\tensor\p17'

查看训练过程参数的变化
pytorch入门笔记_第20张图片

2.验证上面训练好的模型

将下面图片作为测试,验证模型的判别能力
pytorch入门笔记_第21张图片

import torch
import torchvision.transforms
from PIL import Image
from torch import nn

img_path = r"D:\pytorch\images\1.png"
image = Image.open(img_path)
#注意,输入图像是RGBA四通道,需要转化成RGB才能作为输入
image =image.convert('RGB')
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
print(image)

#注意,这里需要加map_location=torch.device('cpu'),否则会报错
#报错原因为,pth文件是gpu训练的,查看也需要gpu才能查看,如果用cpu查看,需要定义map_location
model = torch.load('model_20.pth',
                   map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad():
    input = model(image)
print(input)
#argmax(1),输入横坐标最大值的位置。
#argmax(0),输入纵坐标最大值的位置。
print(input.argmax(1))

#[0]--对应飞机。[5]--对应狗
if int(input.argmax(1))==0:
    print('这张图片是飞机')
if int(input.argmax(1))==5:
    print('这张图片是狗')

输出结果如下:

#这张图片在数据集里面十个样本的得分
tensor([[-0.8269, -4.7926,  4.6858,  4.5988,  0.8839,  4.3825,  5.5920,  0.9652,
         -5.3038, -3.5787]])
#图片在十个数据样本里得分最高的是第7位标签(因为从0开始数)
tensor([6])

pytorch入门笔记_第22张图片
第七位是马
而我们输入的是狗
说明模型还没有训练好

你可能感兴趣的:(pytorch,python,pytorch,机器学习,深度学习,神经网络)