- OpenGL-什么是软OpenGL/软渲染/软光栅?
软OpenGL(SoftwareOpenGL)或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式(包括几何处理、光栅化、着色等),不依赖GPU硬件加速。这种模式通常性能较低,但兼容性极强,常用于不支持硬件加速的环境或开发调试。例如在集成显卡HD620上运行SolidWorks时,若驱动不支持硬件加速,系统会自动回退到软件OpenGL模式(即"软件opengl")进行渲染。计算机图形学中也
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- WebGL&图形学总结(二)
GISer_Jinger
中大厂面试webgl前端javascript
一、简历中图形学与渲染相关内容梳理(一)专业技能中的图形学储备WebGL与Shader编程:掌握GPU渲染管线原理,能使用GLSL编写着色器,熟悉ShadowMapping、RTT等图形算法。三维引擎应用:熟练使用Three.js和Cesium.js,具备三维场景搭建与高效渲染能力。可视化技术:熟悉Canvas、SVG,掌握GPU加速渲染与主流三维引擎集成(如WebGL与Cesium结合)。(二)
- Perlin柏林噪音算法的Java实现
程序逐梦人
算法java开发语言Java
Perlin柏林噪音算法的Java实现柏林噪音是一种用于生成自然、有机和随机纹理的算法。它在计算机图形学、游戏开发和模拟领域中得到广泛应用。本文将介绍如何使用Java实现Perlin柏林噪音算法,并提供相应的源代码。Perlin柏林噪音算法的原理是基于一种平滑的插值方法,通过对不同频率和振幅的噪音值进行叠加,生成连续的随机值。以下是Java代码实现Perlin柏林噪音算法的示例:importjav
- 3D门锁门把模型设计的探索与实践
半清斋
本文还有配套的精品资源,点击获取简介:本文探讨了如何利用计算机图形学和3D建模技术设计逼真、实用且美观的门锁及门把手数字模型。涵盖了从设计到渲染的全过程,包括功能与安全性、材料与质感、细节处理、装配与动画、渲染后期处理以及文件格式的兼容性和标准化定制。同时,利用高级建模软件如Autodesk3dsMax或Blender,提供了详细的3D模型构建、编辑与优化方法。1.计算机图形学和3D建模技术应用在
- 贝塞尔曲线与动画效果:从基础到进阶
江卓尔
贝塞尔曲线动画效果三次贝塞尔二次贝塞尔HTML5Canvas
贝塞尔曲线与动画效果:从基础到进阶背景简介在计算机图形学中,贝塞尔曲线是一种用于设计光滑曲线的重要工具。在动画和游戏开发中,贝塞尔曲线经常被用来生成平滑的运动路径。本章节将深入探讨贝塞尔曲线在动画中的应用,以及如何在HTML5Canvas上模拟物理效果以增强动画的真实感。贝塞尔曲线的基础应用三次贝塞尔曲线需要四个控制点来定义其形状。在本章节中,作者通过一个环形移动对象的示例,向我们展示了三次贝塞尔
- C语言实现矩阵转置
人才程序员
C语言系列课程c语言矩阵算法开发语言后端软件工程软件构建
文章目录C语言实现矩阵转置1.什么是矩阵转置?2.矩阵转置的C语言实现2.1定义矩阵2.2转置矩阵2.3示例代码2.4代码解析3.运行示例4.总结C语言实现矩阵转置矩阵转置是线性代数中的一个基本操作,它将一个矩阵的行和列交换。在计算机中,矩阵转置常常用来处理数据结构的优化、图像处理、图形学等领域。在C语言中,实现矩阵转置相对简单。本文将详细介绍矩阵转置的概念、实现方法,并通过示例代码来帮助你理解矩
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 分段贝塞尔曲线
士兵突击许三多
matlab基础贝塞尔曲线matlab贝塞尔曲线
分段贝塞尔曲线什么是分段贝塞尔曲线贝塞尔曲线是一种参数化曲线,广泛应用于计算机图形学和相关领域。分段贝塞尔曲线是将多条贝塞尔曲线连接起来形成的更复杂曲线,它能够表示比单条贝塞尔曲线更复杂的形状。基本概念单段贝塞尔曲线:由控制点和Bernstein基函数定义二次贝塞尔曲线(3个控制点)三次贝塞尔曲线(4个控制点)分段贝塞尔曲线:将多条贝塞尔曲线首尾相连C0连续:简单连接,曲线段在连接点处位置相同C1
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 掌握贝塞尔曲线:计算机图形学中的艺术
Compass宁
本文还有配套的精品资源,点击获取简介:贝塞尔曲线是一种在计算机图形学中被广泛使用的参数曲线,由法国工程师皮埃尔·贝塞尔提出。它在设计、动画、游戏开发和路径规划等多领域有着重要应用。通过控制点定义形状,贝塞尔曲线可通过阶数不同的多项式表示,并通过DeCasteljau算法简化计算。在JavaScript环境中,使用贝塞尔曲线可以创建动态效果,并且贝塞尔曲线的源代码包可能包含必要的实现文件。掌握贝塞尔
- 三次贝塞尔曲线绘制与OpenGL实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:三次贝塞尔曲线是计算机图形学中用于平滑插值和形状设计的重要数学模型,由四个控制点定义。本文将详细解释其基本原理、数学公式,并结合OpenGL的使用方法,探讨其在可视化领域的应用。通过实践操作和源代码分析,学习者将掌握绘制三次贝塞尔曲线的技能,并理解其在游戏开发、UI设计和3D建模中的重要性。1.三次贝塞尔曲线基础概念在计算机图形学领域中,三次贝塞尔曲线是构建光
- 线性代数导引:欧几里得空间
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍线性代数作为计算机科学的基石之一,对人工智能、数据科学、计算机图形学等多个领域都有着深远的影响。本篇博客文章将从欧几里得空间的定义入手,逐步深入讲解线性代数中的核心概念和原理,并结合实际应用场景,展示其强大的计算能力和广泛的适用性。1.1线性代数与欧几里得空间线性代数主要研究线性方程组、向量空间、矩阵等数学工具,以及它们在解决实际问题中的应用。其中,欧几里得空间是线性代数中最为基础和重
- 怎么利用JS根据坐标判断构成单个多边形是否合法
小眼哥
GIS开发前端javascript前端开发语言
怎么利用JS根据坐标判断构成单个多边形是否合法引言在GIS(地理信息系统)、游戏开发、计算机图形学等领域,判断一组坐标点能否构成合法的简单多边形(SimplePolygon)是一个常见需求。合法多边形需要满足几何学上的基本规则,本文将详细介绍如何使用JavaScript实现这一判断。一、什么是合法的简单多边形合法的简单多边形需满足以下条件:顶点数量:至少3个顶点(非共线)闭合性:首尾顶点必须重合(
- A星算法AStarPAth实现2D、3D寻路
我在北京coding
算法unity
A星(A*)算法是一种广泛应用的路径搜索和寻路算法,尤其在游戏开发和图形学领域中,用于解决二维和三维空间中的导航问题。它结合了最佳优先搜索(如Dijkstra算法)和启发式搜索的优点,能够在保证找到最优路径的同时,有效地减少搜索空间,提高搜索效率。A*算法的核心在于它使用了一个评估函数来衡量从起点到目标点的估计成本,这个函数通常由两部分组成:实际代价(g(n))和预计未来代价(h(n))。实际代价
- OpenGL混合排序实例 - C/C++编写
DarcyCode
c语言c++算法C/C++
OpenGL混合排序实例-C/C++编写在计算机图形学中,混合(blending)是指将两个或多个颜色值按照一定的规则进行合成的过程。在OpenGL中,混合功能是通过混合方程式和混合因子来实现的。混合排序是一种优化技术,用于渲染多个透明物体时避免渲染顺序引起的不正确混合结果。本文将介绍如何使用OpenGL和C/C++编写一个简单的混合排序示例。首先,我们需要创建一个OpenGL窗口和渲染上下文。这
- 用Python实现AIGC驱动的3D模型生成:完整教程
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶pythonAIGC3dai
用Python实现AIGC驱动的3D模型生成:完整教程关键词:AIGC、3D模型生成、Python、深度学习、计算机图形学、生成对抗网络、点云处理摘要:本文详细介绍了如何使用Python实现AIGC(人工智能生成内容)驱动的3D模型生成技术。我们将从基础概念出发,逐步深入讲解3D模型生成的原理、算法实现和实际应用。内容包括3D数据表示方法、生成模型架构设计、训练策略优化以及完整的Python实现代
- 轴对齐包围盒(AABB)和有向包围盒(OBB)介绍
hunjinYang
三维点云建模计算机视觉
基本概念OBB(OrientedBoundingBox)和AABB(Axis-AlignedBoundingBox)是计算机图形学和几何处理中常用的两种包围盒,用于快速估算几何体的空间范围,帮助进行碰撞检测、加速渲染、空间分割等任务。两者有不同的特性和应用场景。下面详细介绍它们的概念、特点以及使用场景。1.AABB(Axis-AlignedBoundingBox)AABB是轴对齐包围盒,其边缘与世
- 常用表示三维点云数据的文本格式——obj、ply、xyz...
hunjinYang
三维点云建模计算机视觉
1.xyz文件.xyz文件格式是一种常用于表示三维点云数据的简单文本格式,通常用于存储3D坐标(x,y,z)信息。它在领域如地理信息系统(GIS)、计算机图形学、3D扫描、激光雷达(LiDAR)等领域非常常见,尤其适合表示点云或散列的3D数据集。.xyz文件格式非常简单,只存储每个点的坐标信息,因此不具备颜色、法线或其他属性的描述。1.1格式结构.xyz文件通常是纯文本文件,每一行表示一个三维点的
- Voronoi 图与 Delaunay 三角剖分
hunjinYang
三维点云建模计算机视觉
Voronoi图与Delaunay三角剖分Voronoi图和Delaunay三角剖分是计算几何中的两个互补的概念,它们被广泛应用于三维建模、地理信息系统、计算机图形学等领域。两者有着紧密的联系,Delaunay三角剖分是Voronoi图的对偶(dual)结构。1.Voronoi图Voronoi图是一种空间划分方法,用于将平面或空间根据一组点分成若干个区域,每个区域都由一个特定的点控制。这些点称为生
- 计算机图形学——Games101深度解析_第二章
Somellllbody
图形渲染游戏程序
三维旋转的符号问题旋转矩阵的符号差异源于坐标系的手系规则和旋转方向定义。首先是我们最常规的绕着z轴旋转,这是右手系下的标准定义,符合"x轴转向y轴"的正方向。Rz(α)=(cosα−sinα00sinαcosα0000100001)\mathbf{R}_z(\alpha)=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\
- vue+threeJs 设置模型默认的旋转角度
资深前端之路
threeJsvue.jsjavascriptecmascript
嗨,我是小路。今天主要和大家分享的主题是“vue+threeJs设置模型默认的旋转角度”。今天主要对设置模型默认的旋转角度,来展示模型的视角。通常在一些3d模型展示的时候,可以用到。模型实例展示图1.Math.PI定义:这个返回一个圆周率的值,相当于3.1415926.......属性列表列表说明2.Quaternion定义:四元数,一个实数,三个虚数;在3D图形学中,四元数常用于表示物体的旋转。
- Vulkan:Vulkan深度缓冲与混合技术_2024-07-20_14-57-06.Tex
chenjj4003
游戏开发人工智能算法着色器python开发语言numpy
Vulkan:Vulkan深度缓冲与混合技术Vulkan深度缓冲基础深度缓冲的概念深度缓冲(DepthBuffer)是计算机图形学中用于解决场景中物体遮挡问题的一种技术。在Vulkan中,深度缓冲通常与深度测试(DepthTest)和深度写入(DepthWrite)一起使用,以确保只有更靠近观察者的像素被绘制到屏幕上。深度缓冲实质上是一个二维数组,每个元素对应屏幕上的一个像素,存储该像素在场景中的
- C++23 std::mdspan:多维数组处理新利器
码事漫谈
C++23c++23
文章目录引言C++23简介std::mdspan的定义与特点定义特点std::mdspan的优势零成本抽象的多维数据访问减少内存开销提高代码灵活性std::mdspan的应用场景科学计算图形学相关提案示例代码使用动态扩展使用静态和动态扩展总结引言在C++的发展历程中,每一个新版本都带来了一些令人瞩目的新特性,以提升语言的功能和开发效率。C++23也不例外,其中std::mdspan作为一个重要的新
- strassen算法 DeepMind的AlphaZero最快矩阵乘法的前身
中堂李1027
算法矩阵线性代数
strassen算法DeepMind的AlphaZero最快矩阵乘法的前身矩阵乘法是线性代数中最基础也是最重要的操作之一,广泛应用于科学计算、工程、计算机图形学、机器学习等领域。随着数据规模的不断扩大,如何高效地进行矩阵乘法成为研究的热点。本文将介绍传统的矩阵乘法方法以及一种经典的优化算法——Strassen算法,并探讨它们在4×4矩阵乘法中的应用。目录引言矩阵乘法基础传统矩阵乘法Strassen
- 图形学中的边界描述法BREP介绍
yuanpan
CAD图形渲染
BREP(BoundaryRepresentation,边界表示法)是三维几何建模中最核心的表示方法之一,尤其在CAD(计算机辅助设计)、CAE(计算机辅助工程)和3D图形处理领域应用广泛。以下从原理、结构、应用场景等方面详细解析:一、BREP的定义与核心思想基本概念:BREP通过描述物体的边界表面(面、边、顶点)来定义三维形状。物体的几何形状由其表面、边界的拓扑结构
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&