作者: 王一凡 英特尔物联网行业创新大使
本文主要介绍在C++中使用OpenVINO工具包部署YOLOv5模型,主要步骤有:
下面,本文将依次详述
配置OpenVINO C++开发环境的详细步骤,请参考《在Windows中基于Visual Studio配置OpenVINO C++开发环境》。
下载并转换YOLOv5预训练模型的详细步骤,请参考:《基于OpenVINO™2022.2和蝰蛇峡谷优化并部署YOLOv5模型》,本文所使用的OpenVINO是2022.3 LTS版。
完成上述步骤后,可以获得YOLOv5的IR模型文件:yolov5s.xml 和 yolov5s.bin,如下图所示:
图1-1 YOLOv5 IR模型文件
一个端到端的AI推理程序,主要包含五个典型的处理流程:
图 1-2 端到端的AI推理程序处理流程
OpenCV提供imread()函数将图像文件载入内存,
Mat cv::imread (const String &filename, int flags=IMREAD_COLOR)
若是从视频流(例如,视频文件、网络摄像头、3D摄像头(Realsense)等)中,一帧一帧读取图像数据到内存,则使用cv::VideoCapture类,对应范例代码请参考OpenCV官方范例代码:opencv/samples/cpp at 4.x · opencv/opencv · GitHub。
图 1-3 从视频流读取图像帧范例
图像数据输入YOLOv5模型前需要做预处理,其主要工作有:使用Letterbox算法对图像进行非变形放缩,然后完成转换颜色通道、归一化数据、更改数据布局和数值精度。
直接调用OpenCV的cv::resize()函数将原始图像按照模型输入要求的尺寸进行放缩,虽然实现起来简单,但会导致图像中的被检测对象变形。Letterbox算法一种不会导致被检测对象变形的缩放,主要步骤为:
参考YOLOv5的Letterbox算法实现方式,本文的Letterbox函数实现如下所示:
cv::Mat letterbox(cv::Mat& img, std::vector new_shape = {640, 640}){
// Get current image shape [height, width]
// Refer to https://github.com/ultralytics/yolov5/blob/master/utils/augmentations.py#L111
int img_h = img.rows;
int img_w = img.cols;
// Compute scale ratio(new / old) and target resized shape
float scale = std::min(new_shape[1] * 1.0 / img_h, new_shape[0] * 1.0 / img_w);
int resize_h = int(round(img_h * scale));
int resize_w = int(round(img_w * scale));
// Compute padding
int pad_h = new_shape[1] - resize_h;
int pad_w = new_shape[0] - resize_w;
// Resize and pad image while meeting stride-multiple constraints
cv::Mat resized_img;
cv::resize(img, resized_img, cv::Size(resize_w, resize_h));
// divide padding into 2 sides
float half_h = pad_h * 1.0 / 2;
float half_w = pad_w * 1.0 / 2;
// Compute padding boarder
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
// Add border
cv::copyMakeBorder(resized_img, resized_img, top, bottom, left, right, 0, cv::Scalar(114, 114, 114));
return resized_img;
}
letterbox函数的运行结果如下图所示:
图 1-4 letterbox放缩图片的效果
转换颜色通道、归一化数据、更改数据布局和数值精度的操作可以由OpenCV提供的 Mat cv::dnn::blobFromImage()函数实现,或者由OpenVINO的预处理API实现。为了简洁范例代码,本文选择调用cv::dnn::blobFromImage()函数。
基于OpenVINO Runtime C++ API实现AI推理计算主要有两种方式:一种是同步推理方式,一种是异步推理方式,本文主要介绍同步推理方式。
主要步骤有:
基于OpenVINO Runtime C++API的同步推理代码如下所示:
// -------- Step 1. Initialize OpenVINO Runtime Core --------
ov::Core core;
// -------- Step 2. Compile the Model --------
auto compiled_model = core.compile_model(model_file, "CPU"); //GPU.1 is dGPU A770
// -------- Step 3. Create an Inference Request --------
ov::InferRequest infer_request = compiled_model.create_infer_request();
// -------- Step 4. Read a picture file and do the preprocess --------
cv::Mat img = cv::imread(image_file); //Load a picture into memory
std::vector paddings(3); //scale, half_h, half_w
cv::Mat resized_img = letterbox(img, paddings); //resize to (640,640) by letterbox
// BGR->RGB, u8(0-255)->f32(0.0-1.0), HWC->NCHW
cv::Mat blob = cv::dnn::blobFromImage(resized_img, 1 / 255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), true);
// -------- Step 5. Feed the blob into the input node of YOLOv5 -------
// Get input port for model with one input
auto input_port = compiled_model.input();
// Create tensor from external memory
ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
// Set input tensor for model with one input
infer_request.set_input_tensor(input_tensor);
// -------- Step 6. Start inference --------
infer_request.infer();
// -------- Step 7. Get the inference result --------
auto output = infer_request.get_output_tensor(0);
auto output_shape = output.get_shape();
std::cout << "The shape of output tensor:"<
对于目标检测应用,后处理主要是执行NMS(非极大值抑制)算法去除多余的检测框,然后剩余的检测框中提取出检测框坐标(box)、置信度(confidence)和类别(class_id)。NMS算法本文直接使用了cv::dnn::NMSBoxes()。
经过后处理,获得了经过NMS过滤后的检测框坐标(box)、置信度(confidence)和类别(class_id)后,就可以将这些信息显示在图像上了。
完整的代码实现,请下载:yolov5_openvino_sync_dGPU.cpp
配置OpenVINO C++开发环境后,可以直接编译运行yolov5_openvino_sync_dGPU.cpp,结果如下图所示。使用OpenVINO Runtime C++ API函数开发YOLOv5推理程序,简单方便,并可以任意部署在英特尔CPU、集成显卡和独立显卡上。
图 1-5 运行结果