季节效应序列分析

一、导入数据

analy <- read.csv("D:\\季节效应.csv",header = T,row.names = 1,encoding = "UTF-8")
analy

二、时序图

analy1 <- ts(analy,start = c(1963,1),end = c(1976,12),frequency = 12)
plot(analy1)

季节效应序列分析_第1张图片
根据时序图,该序列存在长期向上的趋势、季节性变化和随机波动的影响。随着趋势的递增,序列呈现出和季节变化相关的稳定周期性波动,应采用乘法模型。

三、趋势效应与季节效应的提取

Result1=decompose(analy1,type = "multiplicative")  #乘法模型
plot(Result1)

季节效应序列分析_第2张图片

# 提取趋势效应
plot(Result1$trend)
abline(lm(Result1$trend~time(analy1)),col="2")   #选择2号颜色为趋势线标线

季节效应序列分析_第3张图片
结论:总体递增

# 提取季节效应
sea=as.vector(Result1$seasonal)
sea=sea[1:12]
plot(sea,type = 'l')

季节效应序列分析_第4张图片
结论:如图所示,2月份为最低点,6、7、8月份达到高峰值,存在明显季节性。
因此指数平滑模型选择Holt-Winters三参数指数平滑。

四、Holt-Winters三参数指数平滑

(加法模型)

H=HoltWinters(analy1,seasonal = "additive")  #seasonal = "additive"可省略,默认加法模型
H

季节效应序列分析_第5张图片
结论:Xt+k=875.583001+1.971655k+Sj,k>=1

#手动预测:
xx1977.1=875.583001+1.971655*1-53.694536
xx1977.2=875.583001+1.971655*2-116.436891
xx1977.3=875.583001+1.971655*3-105.404840
xx1977.1
xx1977.2
xx1977.3
#系统预测
fore_H=forecast(H1, h=36)
fore_H

季节效应序列分析_第6张图片

(乘法模型)

H1=HoltWinters(analy1,seasonal =  "multiplicative")  #乘法模型
H1

季节效应序列分析_第7张图片
结论:xt+k=(875.5123349+1.9568538k)Sj

#手动预测
x1977.1=(875.5123349+1.9568538*1)*0.9301067
x1977.2=(875.5123349+1.9568538*2)*0.8613974
x1977.3=(875.5123349+1.9568538*3)*0.8741871
x1977.1
x1977.2
x1977.3
#系统预测
fore_H1=forecast(H1, h=36)
fore_H1

季节效应序列分析_第8张图片
结论:乘法模型的预测效果优于加法模型。

plot(fore_H1)
lines(fore_H1$fitted,col=3)

季节效应序列分析_第9张图片

五、ARIMA模型

5.1差分平稳化:

因原序列存在季节性和趋势性,对原序列做差分平稳化,使其转为平稳性模型。

Difference1=diff(analy1)   #一阶差分
plot(Difference1)

季节效应序列分析_第10张图片
对原序列做1阶差分后,消除了递增的趋势。

D=diff(diff(analy1),12)    #一阶十二步差分
plot(D)

季节效应序列分析_第11张图片
然后对1阶差分后的序列进行12步差分,消除了季节趋势。

5.2对差分后序列作平稳性检验

adf.test(D,nlag=3)

季节效应序列分析_第12张图片
结论:p=0.01

5.3对差分后序列作白噪声检验

lag = c()  
Q.value = c()  
p.value = c()  
for(i in 1:12){  
  test = Box.test(D,lag=i,type="Ljung-Box")  
  lag[i] = i  
  Q.value[i] = test$statistic  
  p.value[i] = test$p.value  
}  
data.frame(lag=lag,Q.value=Q.value,p.value=p.value)

季节效应序列分析_第13张图片
结论:差分后的序列为平稳非白噪声序列。

5.4模型识别

acf(D,lag.max=60)
pacf(D,lag.max=60)

季节效应序列分析_第14张图片季节效应序列分析_第15张图片
结论:acf拖尾,pacf拖尾,12阶以内的ACF和PACF均不截尾,

故用ARMA(1,1)模型提取差分后序列的短期自相关信息

自相关系数1阶截尾,故用 ARMA(0,1)12 拟合季节自相关信息

偏自相关系数1阶截尾,故用 ARMA(1,0)12 拟合季节自相关信息

故模型识别为:ARIMA(1,1,1)X(0,1,1)12 和 ARIMA(1,1,1)X(1,1,0)12 或者ARIMA(0,1,6)X(0,1,1)12

5.5模型拟合与检验

(1)拟合ARIMA(1,1,1)X(0,1,1)12

fit_1<-arima(analy1,order=c(1,1,1),seasonal = list(order=c(0,1,1),period=12))
fit_1

季节效应序列分析_第16张图片

检验模型ARIMA(1,1,1)X(0,1,1)12

ts.diag(fit_1)

季节效应序列分析_第17张图片

(2)拟合模型ARIMA(1,1,1)X(1,1,0)12

fit_2=arima(analy1,order = c(1,1,1),seasonal=list(order=c(1,1,0),period=12))
fit_2

季节效应序列分析_第18张图片

检验模型ARIMA(1,1,1)X(1,1,0)12

ts.diag(fit_2)

季节效应序列分析_第19张图片
结论:两个模型都不通过检验

(3)拟合模型ARIMA(0,1,6)X(0,1,1)12

fit_3=arima(analy1,order = c(0,1,6),seasonal=list(order=c(0,1,1),period=12))
fit_3

季节效应序列分析_第20张图片
∇ ∇ 12 ∇∇_{12} 12 X t X_t Xt =
(1-0.924B -0.0793 B 2 B^{2} B2 -0.3075 B 3 B^{3} B3 + 0.0590 B 4 B^{4} B4 - 0.0684 B 5 B^{5} B5 + 0.3202 B 6 B^{6} B6) * (1 - 0.4184 B 12 B^{12} B12) e t e_t et

检验模型ARIMA(0,1,6)X(0,1,1)12

ts.diag(fit_3)

季节效应序列分析_第21张图片

(4)拟合模型ARIMA(0,1,6)X(1,1,0)

fit_4=arima(analy1,order = c(0,1,6),seasonal=list(order=c(1,1,0),period=12))
fit_4

季节效应序列分析_第22张图片

检验模型ARIMA(0,1,6)X(1,1,0)

ts.diag(fit_4)

季节效应序列分析_第23张图片

(5)拟合模型ARIMA(3,1,2)X(1,1,0)

x4_fit<-arima(analy1,order=c(3,1,2),seasonal = list(order=c(1,1,0),period=12))
x4_fit

季节效应序列分析_第24张图片

∇ ∇ 12 ∇∇_{12} 12 X t X_t Xt = 1 − 1.7905 B + 0.7905 B 2 1 − 0.8229 B − 0.0030 B 2 + 0.3107 B 3 \frac{1-1.7905B+0.7905B^2}{1-0.8229B-0.0030B^2+0.3107B^3} 10.8229B0.0030B2+0.3107B311.7905B+0.7905B2*( 1 − 0.4073 B 1-{0.4073B} 10.4073B) e t e_t et

六、评判模型的相对优劣

data.frame(AIC(fit_1), AIC(fit_4), BIC(fit_1), BIC(fit_4))

你可能感兴趣的:(r语言)