深度学习在医学影像中的研究进展及发展趋势

摘要医学影像是临床诊断的重要辅助工具,医学影像数据占临床数据的90%,因此,充分挖掘医学影像信息将对临床智能诊断、智能决策以及预后起到重要的作用。随着深度学习的出现,利用深度神经网络分析医学影像已成为目前研究的主流。根据医学影像分析的流程,从医学影像数据的产生、医学影像的预处理,到医学影像的分类预测,充分阐述了深度学习在每一环节的应用研究现状,并根据其面临的问题,对未来的发展趋势进行了展望。

关键词深度学习 ; 医学影像 ; 图像处理 ; 人工智能 ; 卷积神经网络

1 引言

医学成像已成为临床诊断的重要辅助手段,其包括计算机断层扫描(computed tomography,CT)成像、磁共振成像(magnetic resonance imaging,MRI)、正电子发射断层扫描(positron emission tomography,PET)成像、超声(ultrasound, US)成像、X射线(X-ray)成像等。如何借助大数据和人工智能技术,深入挖掘海量的医学图像信息,实现基于影像数据的智能诊断、智能临床决策以及治疗预后,已成为目前的研究热点。

深度学习属于机器学习的分支,是目前实现人工智能技术的重要手段。随着深度学习技术

你可能感兴趣的:(物联网及AI前沿技术专栏,深度学习,计算机视觉,人工智能)