【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)

【mmdetection小目标检测教程】一、openmmlab基础环境搭建

  • 1.系统环境
  • 2.构建虚拟环境
  • 3.安装pytorch
  • 4. 安装mmegine和mmcv
  • 5.安装mmdetection

mmdetection作为openmmlab在github上star数最多的仓库,是商汤和港中文正式开源的目标检测工具箱 ,这是一个基于 PyTorch 的开源工具包。该工具包支持 Mask RCNN 等多种流行的检测框架,可在 PyTorch 环境下测试不同的预训练模型及训练新的检测分割模型。
本文将基于pytorch搭建mmdetection基础环境

1.系统环境

  • ubuntu20.04
  • cuda11.3
  • cudnn8.4.1
  • anaconda3

2.构建虚拟环境

conda create -n mmlab python=3.9
conda activate mmlab

3.安装pytorch

前往pytorch官网,根据自己环境选择合适的torch版本pytorch官网

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

【mmdetection小目标检测教程】一、openmmlab基础环境搭建(含mmcv、mmengine、mmdet的安装)_第1张图片
安装完成截图
在这里插入图片描述

4. 安装mmegine和mmcv

这里需要注意一个点,mmdet和mmcls依赖的是mmcv-v1.x版本,而mmseg依赖的是mmcv-v2.x

  • 在mmcv-v1.x中,cuda版本的叫mmcv-full,cpu版本的叫mmcv;
  • 在mmcv-v2.x版本中,mmcv-full被重新命名为mmcv,因此cuda版本的直接安装mmcv就可以,如果不是cuda版本的,则需要使用mim install mmcv-lite进行安装
pip install openmim
mim install mmengine
mim install mmcv-full

5.安装mmdetection

通过源码安装mmdetection,当然也可以直接通过mim install mmdet进行安装

git clone https://github.com/open-mmlab/mmcv.git -b v3.0.0rc5
pip install -r requirements.txt
mim install -v -e .

安装完成截图
在这里插入图片描述
至此,环境已经全部搭建完成~可以开始后续的配置训练工作了

你可能感兴趣的:(目标检测,深度学习,计算机视觉)