- Pycharm配置conda虚拟环境出现unsupported
徐徐祥来-小黑皮
pycharmcondaide
1.最近小黑皮在学习Mask-Rcnn框架,初步计划是先跑通一遍,再去深入学习。起初我的anaconda里已经有一个支持做图像处理的虚拟环境了。2.tensorflow-gpu就是之前配置好的环境。3.但是在跑的过程中,出现了tensorflow和keras版本冲突的问题,我又不想降级。本身里面的包就比较多。4.所以我索性创建一个新的虚拟环境,即mask-rcnn。5.在pycharm中配置con
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- 中文文档版面分析
鱼遇雨愈愉
ocr
PDF中文论文版面分析,目前看来训练结果较好,推理结果如下图所示。模型使用Mask-RCNN,数据集使用公开数据。
- labelme 标注的数据集转化为Mask-Rcnn适用的数据集
小龙Guo
python开发语言数据集
labelme标注的数据集转化为Mask-Rcnn适用的数据集食用步骤1.labelme标注数据时,将生成的json文件和原图保存在一起2.只需提供labelme生成的数据的文件夹,和maskrcnn的数据集文件夹,运行代码就会自动进行处理3.代码会在提供的maskrcnn数据集文件夹下生成’cv2_mask’,‘json’,‘label’,‘pic’,‘yaml’,'pic_and_mask’这
- Mask-RCNN网络——实例分割
shuyeah
深度学习计算机视觉卷积神经网络
Mask-RCNN网络——实例分割实例分割任务可以看做分为两部分:目标检测和语义分割1、Mask-RCNN的网络结构框架2、Mask-RCNN网络的的具体步骤2.1主干特征提取网络ResNet101这里默认输入图片大小为1024*1024图片来自https://blog.csdn.net/weixin_44791964/article/details/104629135残差网络的残差块分为两类:I
- YOLO系列/20230903
lucharaar
YOLO
深度学习经典检测方法1.two-stage(分两阶段):Faster-Rcnn和Mask-Rcnn系列-------检测过程中加了预选框步骤速度通常较慢(5FPS),但是效果通常不错非常实用的通用框架Mask-Rcnn,需要了解2.one-stage(单阶段):YOLO系列------当我们想做检测任务,一个cnn网络直接做一个回归任务就可以,中间不需要加额外的补充最核心的优势:速度非常快,适合做
- mask-rcnn原理与实战
nice-wyh
pytorch目标检测人工智能
一、MaskR-CNN是什么,可以做哪些任务?MaskR-CNN是一个实例分割(Instancesegmentation)算法,可以用来做“目标检测”、“目标实例分割”、“目标关键点检测”。1.实例分割(Instancesegmentation)和语义分割(Semanticsegmentation)的区别与联系联系:语义分割和实例分割都是目标分割中的两个小的领域,都是用来对输入的图片做分割处理;区
- MASK-RCNN 三种基础结构
樨潮
目标检测
MaskXRCnn俨然成为一个现阶段最成功的图像检测分割网络,关于MaskXRCnn的介绍,需要从MaskRCNN看起。当然一个煽情的介绍可见:何恺明团队推出Mask^XR-CNN,将实例分割扩展到3000类。MaskRCnn取得的精细结果有三个主要技术构架:DeepMask、SharpMask、MultiPathNet。MaskRCNN与普通FNN的典型不同之处,重要两点为添加了SharpMas
- mmdetection安装与训练
不减到100斤不吃锅包肉
深度学习pytorch深度学习
一、什么是mmdetection商汤科技(2018COCO目标检测挑战赛冠军)和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架。二、mmdetection安装本人安装环境:系统环境:Ubuntu20.0
- Faster-RCNN and Mask-RCNN框架解析
nice-wyh
pytorch目标检测深度学习机器学习
由于本人记忆力实在太差,每次学完一个框架没过多久就会忘,而且码文能力不行,人又懒,所以看到了其他人写的不错的两篇框架解析的博文,先来记录一下,就当是我写的喽Faster-rcnn详解_fasterr-cnn-CSDN博客MaskR-CNN详解_maskrcnn-CSDN博客
- 4、目标检测
爱补鱼的猫猫
深度学习笔记目标检测计算机视觉深度学习
目标检测一、分类和发展史二、Anchor锚三、anchor-based1、one-stage2、two-stage四、anchor-free五、YOLO系列六、R-CNN系列**1、R-CNN**2、Spp-Net3、Fast-RCNN4、Faster-RCNN5、Mask-RCNN一、分类和发展史计算机视觉的任务很多,有图像分类、目标检测、图像分割(语义分割、实例分割和全景分割等)、图像生成。目
- labelme 语义分割数据集_图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练...
weixin_39556064
labelme语义分割数据集
labelme(标注mask数据集用的)windowspython2pipinstallpyqtpipinstalllabelmepython3pipinstallpyqt5pipinstalllabelmeubuntu16.04系统自带的python2.7环境sudoapt-getinstallpython-qt4pyqt4-dev-toolssudopipinstalllabelme#pyth
- labelme maskrcnn 批量_用自己的数据集训练Mask-RCNN实现过程中的坑
出迷佬
labelmemaskrcnn批量
原标题:用自己的数据集训练Mask-RCNN实现过程中的坑图片源自:unsplash作者蹦跶的小羊羔如需转载,请联系原作者授权。本文仅仅是自己实现过程的笔记记录,仅仅用来交流的。在网上大量搜集资料后,实现Mask-RCNN,但是过程中还是出现了很多很多的问题,所以将过程记录如下,方便日后学习。一、实验前准备1.COCO数据集COCO的全称是CommonObjectsinCOntext,是微软团队提
- 使用Mask-RCNN训练自己的数据集看这一篇就够了,从制作数据集开始一步步教你如何玩转Mask-RCNN(保姆级教程)
ekekkk
深度学习人工智能目标检测
一、安装labelme深度学习算法等基于神经网络的算法都是基于数据驱动的,数据的好坏会影响你最后生成的模型的好坏,在使用Mask-RCNN时,第一件事就是标注数据集,这里我们默认你已经配置好了anaconda的环境,如果你没有配置好可以参考一下其他人的博客,在已经配置好的conda环境下新建一个虚拟环境,在终端中输入以下命令安装标注工具labelme:pipinstalllabelmepipins
- MASK-RCNN tensorflow环境搭建
小龙Guo
深度学习tensorflowpythoncnn
此教程默认你已经安装了Anaconda,且tensorflow为cpu版本。为什么不用gpu版本,原因下面解释。此教程默认你已经安装了Anaconda。因为tensorflow2.1后的gpu版·,不支持windows。并且·只有高版本的tensorflow才对应我的CUDA12.2;而且,我之前安装了pytorch跑tolov8,cuda都很高。安装tensorflow-gpu的话,需要重新安装
- 【论文阅读】【yolo系列】YOLACT Real-time Instance Segmentation
magic_ll
yolo系列深度学习相关的论文阅读论文阅读YOLO
论文链接:https://arxiv.org/pdf/1904.02689.pdf1实例分割已有工作【实例分割】鉴于其重要性,大量的研究投入到实例分割的准确性。两阶段:Mask-RCNN[18]是一种具有代表性的两阶段实例分割方法,它首先生成候选感兴趣区域(roi),然后在第二阶段对这些roi进行分类和分割。后续工作试图通过提高其准确性,例如,丰富FPN特性[29]或解决掩码的置信度分数与其定位精
- mask-R-CNN
Tian-Feng
深度学习YOLOr语言cnn开发语言
前言代码论文#Mask-rcnn算法在torchvision中有直接实现,可以直接引用使用在自己的工作中。importtorchvisionmodel=torchvision.models.detection.maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT)MaskR-CNN(MaskRegion-basedC
- 基于PyTorch搭建Mask-RCNN实现实例分割
积雨辋川
计算机视觉深度学习pytorch图像处理计算机视觉
基于PyTorch搭建Mask-RCNN实现实例分割在这篇文章中,我们将讨论MaskRCNNPytorch背后的理论以及如何在PyTorch中使用预训练的MaskR-CNN模型。1.语义分割、目标检测和实例分割在之前的博客文章里介绍了语义分割和目标检测(如果感兴趣可以参考以下文章):图像语义分割概述Pytorch实现图像语义分割(初体验)基于PyTorch搭建FasterRCNN实现目标检测语义分
- 【OCR】文本检测方案 TextFuseNet解读
门被核桃夹了还能补脑嘛
Harvester深度学习计算机视觉目标检测ocr
TextFuseNet:SceneTextDetectionwithRicherFusedFeaturesPDFLinkGithubCode一些总结,非作者文章内容:实质上是去通过文本检测中多级别的目标融合的方法来提升检测效果的,核心价值其实分两点来看提出了一种利用Mask-RCNN的流程以及多分枝的结构实现多层特征融合方案,从全局特征->词特征+字符特征来提升文字检测效果。性能优势非常非常明显,
- pytorch 训练过程内存泄露/显存泄露debug记录:dataloader和dataset导致的泄露
Cleo_Gao
debugpytorch人工智能python
背景微调mask-rcnn代码,用的是torchvision.models.detection.maskrcnn_resnet50_fpn代码,根据该代码的注释,输入应该是:images,targets=None(List[Tensor],Optional[List[Dict[str,Tensor]]])->Tuple[Dict[str,Tensor],List[Dict[str,Tensor]]
- 语义分割—1 Mask RCNN
山居秋暝LS
计算机视觉
MaskRCNN1Mask-RCNN网络结构1.1Backbone:Resnet1011.2RPNblock1.3RoiAlign+(Reg,Cls)block+Mask2损失Mask-RCNN:Backbone+RPNblock+(Reg,Cls)block+Maskblock(1)Backbone用Resnet101提取下采样2次、3次、4次、5次的特称层构造特征金字塔。(2)RPNblock
- 检测论文综述(一) : 从RCNN到Mask-RCNN
Junr_0926
对于目标检测方向并不是特别熟悉,本文记录一下RCNN,fast-RCNN,faster-RCNN,mask-RCNN这4篇有关目标检测的论文笔记和学习心得。RCNN-RichfeaturehierarchiesforaccurateobjectdetectionandsemanticsegmentationR-CNN的意思就是Regionbased,主要思路就是根据一张图像,提取多个region,
- 训练自己的数据集时,重复训练同一张照片,怎么解决?
Xin.643
人工智能tensorflowpython
我在用Mask-RCNN训练自己的数据集,利用的autodl上的远程服务器,系统是ubuntu18.04,下面是我运行的结果,有没有人知道是什么原因呢,求帮助,谢谢大家(用的tensorflow框架)
- [Win11]Mask-RCNN 环境配置
Xin.643
pythontensorflow深度学习
[Win11]Mask-RCNN环境配置1.安装tensorflow//conda指令安装condainstalltensorflow-gpu=2.6//验证安装成功pyhon//进入python环境importtensorflowastfprint(tf.__version__)//输出版本号tf.test.is_gpu_available()//输出“True”即为安装成功2.安装必要依赖包t
- yolo系列学习
邦之彦
YOLO
文章目录理论基础YOLO-V1YOLO-V2教学视频理论基础不同阶段算法优缺点分析two-stage(两阶段):Faster-rcnn、Mask-Rcnn,多了预选框操作RPNOne-stage(单阶段):YOLO指标分析精度Precision查准率,预测为正且实际为正占预测为正的比例召回率Recall查全率,预测为正且实际为正占总体正样本的比例准确度Accuracy,预测为正且实际为正和预测为负
- YOLO算法入门知识概念
红狐狸的北北记
机器学习与深度学习YOLO算法python深度学习
1.two-stage&&one-stagetwo-stage(两阶段):Faster-rcnn,Mask-Rcnn系列(5EPS)---多了预选环节one-stage(单阶段):YOLO系列(速度快)---实时检测时常用2.Map指标:综合衡量控制效果包含了精度和recall(召回率)两个部分3.IOU(交集与并集的比值)IOU=AreaofOverlap/AreaofUnion(交集/并集)这
- 舌诊图像分析答辩总结
贝斯塔
python深度学习目标检测
今天答辩结束了,准备了这么久,总体表现还可以。还是有一部分表述不是太准确,有些部分没展现出来。我们都是站在前人的肩膀上眺望远方,尽力、有收获就可以了。从最初的参考各个文献想使用Mask-RCNN同时对图像中物体进行检测和分割,由于电脑配置不行,放弃了这条,到最后有了清晰思路,决定选用相对较新的ResNeXt,Yolov5,其实最初也是对前人思路的模仿。对食管癌、非食管癌的分类,最初设想是保留患者就
- 出现错误(已解决)安装skimage包时报错解决方法
Bonefire20
python开发语言
错误:(mask-rcnn)ltsyl308@ltsyl308:~/modification/Mask_RCNN-2.1$pipinstallskimageCollectingskimageUsingcachedskimage-0.0.tar.gz(757bytes)Preparingmetadata(setup.py)...errorerror:subprocess-exited-with-er
- 批量从多个文件夹中提取图片的小脚本
冰虺
深度学习计算机视觉pytorch
importosimportshutilpath='F://maskrcnntang//MASK-RCNN//maskrcnn_test//mydata//labelme_json//'#_json文件夹所在的路径new_path='F:\\maskrcnntang\\MASK-RCNN\\maskrcnn_test\\mydata\\cv2_mask'#需保存的路径count=os.listdi
- On Pre-Trained Image Features and Synthetic Images for Deep Learning总结
中了胖毒
文章链接摘要深度学习为了获得较好效果需要大量的训练数据,并且需要对这些数据进行人工标注。收集标注数据的过程费时费力,因此,使用合成图片训练网络越发吸引关注。本文提出了一个使用合成数据训练目标检测网络的简单有效的方法:在真实图片上预训练好的通用网络,固定其前几层,然后使用OpenGL渲染合成的图片训练优化后续层的参数。文章在几个经典的网络(Faster-RCNN,Mask-RCNN,Inceptio
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla