要求:遗传算法解决TSP问题。
文件:N个城市的距离矩阵(下三角矩阵)
注意:老师可能会给其他N个城市的下三角距离矩阵,修改一下city_num和文件名即可。
import pandas as pd
import numpy as np
#初始化种群
def Ini_pop(city_num, pop_num, pop, distance, matrix_distance):
rand_ch = np.array(range(city_num))
for i in range(pop_num):
np.random.shuffle(rand_ch)
pop[i, :] = rand_ch
distance[i] = count_dis(city_num, matrix_distance, rand_ch)
# 这里的适应度是距离
#计算本次路径所有城市间的距离
def count_dis(city_num, matrix_distance, one_path):
res = 0
for i in range(city_num - 1):
res += matrix_distance[one_path[i], one_path[i + 1]]
res += matrix_distance[one_path[-1], one_path[0]] # 最后一个城市和第一个城市的距离,需单独处理
return res
# 打印出当前路径
def print_path(city_num, one_path):
res = str(one_path[0] + 1) + '-->'
for i in range(1, city_num):
res += str(one_path[i] + 1) + '-->'
res += str(one_path[0] + 1)
print("最佳路径为:")
print(res)
# 轮盘赌的方式选择子代
def select_lunpan(pop_num, pop, distance):
fit = 1. / distance # 适应度函数
p = fit / sum(fit)
q = p.cumsum() # 累积概率
select_id = []
for i in range(pop_num):
r = np.random.rand() # 产生一个[0,1)的随机数
for j in range(pop_num):
if r < q[0]:
select_id.append(0)
break
elif q[j] < r <= q[j + 1]:
select_id.append(j + 1)
break
next_gen = pop[select_id, :]
return next_gen
# 交叉操作-每个个体对的某一位置进行交叉
def cross_tran(city_num, pop_num, next_gen, cross_prob, evbest_path):
for i in range(0, pop_num):
best_gen = evbest_path.copy()
if cross_prob >= np.random.rand():
next_gen[i, :], best_gen = intercross(city_num, next_gen[i, :], best_gen)
# 部分映射交叉
def intercross(city_num, inta, intb):
r1 = np.random.randint(city_num)
r2 = np.random.randint(city_num)
while r2 == r1:
r2 = np.random.randint(city_num)
left, right = min(r1, r2), max(r1, r2)
ind_a1 = inta.copy()
ind_b1 = intb.copy()
for i in range(left, right + 1):
ind_a2 = inta.copy()
ind_b2 = intb.copy()
inta[i] = ind_b1[i]
intb[i] = ind_a1[i]
# 每个个体包含的城市序号是唯一的,因此交叉时若两个不相同,就会产生冲突
x = np.argwhere(inta == inta[i])
y = np.argwhere(intb == intb[i])
# 产生冲突,将不是交叉区间的数据换成换出去的原数值,保证城市序号唯一
if len(x) == 2:
inta[x[x != i]] = ind_a2[i]
if len(y) == 2:
intb[y[y != i]] = ind_b2[i]
return inta, intb
# 变异方式:翻转变异
def mutation_sub(city_num, pop_num, next_gen, mut_prob):
for i in range(pop_num):
if mut_prob >= np.random.rand():
r1 = np.random.randint(city_num)
r2 = np.random.randint(city_num)
while r2 == r1:
r2 = np.random.randint(city_num)
if r1 > r2:
temp = r1
r1 = r2
r2 = temp
next_gen[i, r1:r2] = next_gen[i, r1:r2][::-1]#从最后元素到第一元素复制
def main():
city_num = 21
read = pd.read_table('21.txt', header=None, sep='\s+')
#read = pd.read_csv("rebuild.txt", sep=" ", header=None)
res = np.zeros((21, 21))
# 求两点距离矩阵
row_index = 0
col_index = 0
read = read.values
for i in range(read.shape[0]):
for j in range(read.shape[1]):
if row_index == city_num:
break
res[row_index][col_index] = read[i][j]
res[col_index][row_index] = read[i][j]
if res[row_index][col_index] == 0:
row_index += 1
col_index = 0
else:
col_index += 1
matrix_distance = res
#print(matrix_distance)
city_num = 21 # 城市数量
population_num = 100 # 群体个数
cross_prob = 1 # 交叉概率
mut_prob = 0.2 # 变异概率
iteration = 600 # 迭代代数
# 初始化初代种群和距离,个体为整数,距离为浮点数
pop = np.array([0] * population_num * city_num).reshape(population_num, city_num)
distance = np.zeros(population_num)
# 初始化种群
Ini_pop(city_num, population_num, pop, distance, matrix_distance)
# draw_path(city_num, city_location, pop[0], distance) # 绘制初代图像
evbest_path = pop[0]
evbest_distance = float("inf")
best_path_list = []
best_distance_list = []
# 循环迭代遗传过程
for i in range(iteration):
# 选择
next_gen = select_lunpan(population_num, pop, distance)
# 交叉
cross_tran(city_num, population_num, next_gen, cross_prob, evbest_path)
# 变异
mutation_sub(city_num, population_num, next_gen, mut_prob)
# 更新每个个体距离值(1/适应度)
for j in range(population_num):
distance[j] = count_dis(city_num, matrix_distance, next_gen[j, :])
index = distance.argmin() # index 记录最小总路程
# 为了防止曲线波动,每次记录最优值,如迭代后出现退化,则将当前最好的个体回退替换为历史最佳
if distance[index] <= evbest_distance:
evbest_distance = distance[index]
evbest_path = next_gen[index, :]
else:
distance[index] = evbest_distance
next_gen[index, :] = evbest_path
# 存储每一步的最优路径(个体)及距离
best_path_list.append(evbest_path)
best_distance_list.append(evbest_distance)
best_distance = evbest_distance
best_path = evbest_path
print_path(city_num, best_path)
print(best_distance)
if __name__ == '__main__':
main()
注意:由于遗传算法有概率因素影响,不像暴力求解每次都是最优解,遗传算法TSP问题可能跑多次才可能跑出最优解(21个城市我跑了十几次才跑出最优解),因此,大家多跑几次跑出最优解就可以。