Flink day01

Flink简介
Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Apache软件基金会的顶级项目。
在德语中,Flink一词表示快速和灵巧,项目采用一只松鼠的彩色图案作为logo,这不仅是因为松鼠具有快速和灵巧的特点,还因为柏林的松鼠有一种迷人的红棕色,而Flink的松鼠logo拥有可爱的尾巴,尾巴的颜色与Apache软件基金会的logo颜色相呼应,也就是说,这是一只Apache风格的松鼠。

Flink day01_第1张图片

Flink项目的理念是:“Apache Flink是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架”。
Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算。

Flink day01_第2张图片
Flink的重要特点
事件驱动型(Event-driven)
事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以kafka为代表的消息队列几乎都是事件驱动型应用。
与之不同的就是SparkStreaming微批次,如图:
在这里插入图片描述
事件驱动型:
Flink day01_第3张图片
流与批的世界观
批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。
流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。

在spark的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。
而在flink的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。

无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。
有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。

Flink day01_第4张图片
分层api

Flink day01_第5张图片
最底层级的抽象仅仅提供了有状态流,它将通过过程函数(Process Function)被嵌入到DataStream API中。底层过程函数(Process Function) 与 DataStream API 相集成,使其可以对某些特定的操作进行底层的抽象,它允许用户可以自由地处理来自一个或多个数据流的事件,并使用一致的容错的状态。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。
实际上,大多数应用并不需要上述的底层抽象,而是针对核心API(Core APIs) 进行编程,比如DataStream API(有界或无界流数据)以及DataSet API(有界数据集)。这些API为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows)等等。DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些API处理的数据类型以类(classes)的形式由各自的编程语言所表示。
Table API 是以表为中心的声明式编程,其中表可能会动态变化(在表达流数据时)。Table API遵循(扩展的)关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时API提供可比较的操作,例如select、project、join、group-by、aggregate等。Table API程序声明式地定义了什么逻辑操作应该执行,而不是准确地确定这些操作代码的看上去如何。
尽管Table API可以通过多种类型的用户自定义函数(UDF)进行扩展,其仍不如核心API更具表达能力,但是使用起来却更加简洁(代码量更少)。除此之外,Table API程序在执行之前会经过内置优化器进行优化。
你可以在表与 DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与 DataStream 以及 DataSet 混合使用。
Flink提供的最高层级的抽象是 SQL 。这一层抽象在语法与表达能力上与 Table API 类似,但是是以SQL查询表达式的形式表现程序。SQL抽象与Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行。

目前Flink作为批处理还不是主流,不如Spark成熟,所以DataSet使用的并不是很多。Flink Table API和Flink SQL也并不完善,大多都由各大厂商自己定制。所以我们主要学习DataStream API的使用。实际上Flink作为最接近Google DataFlow模型的实现,是流批统一的观点,所以基本上使用DataStream就可以了。

Flink几大模块
Flink Table & SQL(还没开发完)
Flink Gelly(图计算)
Flink CEP(复杂事件处理)

搭建maven工程

批处理代码

package com.cn.wordcount

import org.apache.flink.api.scala._

object WordCount {
  def main(args: Array[String]): Unit = {
    //创建执行环境
    val env = ExecutionEnvironment.getExecutionEnvironment
    val inputPath="D:\\IdeaProjects\\flinkday01\\src\\main\\resources\\data.txt"
    val inputDS = env.readTextFile(inputPath)
//    inputDS.print()
    // 分词之后,对单词进行groupby分组,然后用sum进行聚合
    val result= inputDS.flatMap(_.split(" ")).map((_, 1)).groupBy(0).sum(1)
    result.print()

  }

}

pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flinkday01</artifactId>
    <version>1.0-SNAPSHOT</version>


    <dependencies>
        
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>1.10.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.10.1</version>
        </dependency>

    </dependencies>
    <build>
        <plugins>
            <!-- 该插件用于将Scala代码编译成class文件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.4.6</version>
                <executions>
                    <execution>
                        <!-- 声明绑定到maven的compile阶段 -->
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

结果

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
(and,1)
(are,1)
(scala,1)
(thank,1)
(you,3)
(fine,1)
(flink,1)
(world,1)
(hello,3)
(how,1)

Process finished with exit code 0

报错回顾

Cannot find compatible factory for specified execution.target (=local)

解决
修改1.10.0 的版本为1.10.1 成功

<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>1.10.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.10.1</version>

实时流处理代码

package com.atguigu.wc

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala._

/**
  * Copyright (c) 2018-2028 尚硅谷 All Rights Reserved 
  *
  * Project: FlinkTutorial
  * Package: com.atguigu.wc
  * Version: 1.0
  *
  * Created by wushengran on 2020/5/23 11:47
  */

// 流处理 word count,DataStream API
object StreamWordCount {
  def main(args: Array[String]): Unit = {
    // 创建流处理执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//    env.setParallelism(8)
//    env.disableOperatorChaining()

    // 从命令参数中读取hostname和port
    val paramTool: ParameterTool = ParameterTool.fromArgs(args)
//    val hostname: String = paramTool.get("host")
//    val port: Int = paramTool.getInt("port")
    val hostname= "192.168.253.129"
    val port= 9999

    // 从socket文本流读取数据
//    val inputDataStream: DataStream[String] = env.socketTextStream("192.168.253.129", 9999)
    val inputDataStream: DataStream[String] = env.socketTextStream(hostname, port)

    // 对DataStream进行转换操作,得到word count结果
    val resultDataStream: DataStream[(String, Int)] = inputDataStream
      .flatMap(_.split(" ")).startNewChain()
      .map( (_, 1))
      .keyBy(_._1)
      .sum(1)

    // 打印输出
    resultDataStream.print().setParallelism(1)

    // 启动job
    env.execute("stream word count job")
  }
}

先启动Linux,输入netcat命令[nc -lk 9999] 9999是端口,然后启动程序,Linux输入内容即可

[root@hadoop01 ~]# nc -lk  9999
55 99 00

输出结果

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
(00,1)
(99,1)
(55,1)

Flink部署

  1. Standalone模式
    安装

安装
解压缩 flink-1.10.0-bin-scala_2.11.tgz,进入conf目录中。
1)修改 flink/conf/flink-conf.yaml 文件:

jobmanager.rpc.address: hadoop01

修改 /conf/slaves文件:

hadoop02
hadoop03

将flnk目录发给另外两台节点

[root@hadoop01 software]# scp -r  flink root@hadoop02:/home/software/
[root@hadoop01 software]# scp -r  flink root@hadoop03:/home/software/

启动

[root@hadoop01 bin]# pwd
/home/software/flink/bin
[root@hadoop01 bin]# ./start-cluster.sh 

Starting cluster.
Starting standalonesession daemon on host hadoop01.
Starting taskexecutor daemon on host hadoop02.
Starting taskexecutor daemon on host hadoop03.

查看进程

[root@hadoop01 bin]# jps
2710 StandaloneSessionClusterEntrypoint
2781 Jps

[root@hadoop02 software]# jps
1921 Jps
1842 TaskManagerRunner

[root@hadoop03 software]# jps
2049 TaskManagerRunner
2100 Jps

访问http://hadoop01:8081可以对flink集群和任务进行监控管理。

Flink day01_第6张图片

提交任务

  1. 准备数据文件
    发送data.txt 到Linux服务器(每台机器上都得有,路径一致)
    发送jar包到Linux服务器
    在bin目录下编写启动命令
[root@hadoop01 bin]# flink run --class com.cn.wordcount.WordCount flinkday01.jar

结果展示

Job has been submitted with JobID 3bc34c670de4ed9986414255f3b01210
Program execution finished
Job with JobID 3bc34c670de4ed9986414255f3b01210 has finished.
Job Runtime: 7698 ms
Accumulator Results: 
- 3d83d3487384bf0d081763819c0a75f3 (java.util.ArrayList) [10 elements]


(and,1)
(are,1)
(fine,1)
(flink,1)
(hello,3)
(how,1)
(scala,1)
(thank,1)
(world,1)
(you,3)

2.Yarn模式
以Yarn模式部署Flink任务时,要求Flink是有Hadoop支持的版本,Hadoop环境需要保证版本在2.2以上,并且集群中安装有HDFS服务。
Flink on Yarn
Flink提供了两种在yarn上运行的模式,分别为Session-Cluster和Per-Job-Cluster模式。
1)Session-cluster 模式:

Flink day01_第7张图片
Session-Cluster模式需要先启动集群,然后再提交作业,接着会向yarn申请一块空间后,资源永远保持不变。如果资源满了,下一个作业就无法提交,只能等到yarn中的其中一个作业执行完成后,释放了资源,下个作业才会正常提交。所有作业共享Dispatcher和ResourceManager;共享资源;适合规模小执行时间短的作业。
在yarn中初始化一个flink集群,开辟指定的资源,以后提交任务都向这里提交。这个flink集群会常驻在yarn集群中,除非手工停止。

2)Per-Job-Cluster 模式:

Flink day01_第8张图片
一个Job会对应一个集群,每提交一个作业会根据自身的情况,都会单独向yarn申请资源,直到作业执行完成,一个作业的失败与否并不会影响下一个作业的正常提交和运行。独享Dispatcher和ResourceManager,按需接受资源申请;适合规模大长时间运行的作业。
每次提交都会创建一个新的flink集群,任务之间互相独立,互不影响,方便管理。任务执行完成之后创建的集群也会消失。

Kubernetes部署
容器化部署时目前业界很流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而Flink也在最近的版本中支持了k8s部署模式。

Flink运行架构
Flink运行时的组件
Flink运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:
作业管理器(JobManager)
控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。JobManager会先接收到要执行的应用程序,这个应用程序会包括:作业图(JobGraph)、逻辑数据流图(logical dataflow graph)和打包了所有的类、库和其它资源的JAR包。JobManager会把JobGraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(ExecutionGraph),包含了所有可以并发执行的任务。JobManager会向资源管理器(ResourceManager)请求执行任务必要的资源,也就是任务管理器(TaskManager)上的插槽(slot)。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。而在运行过程中,JobManager会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。

资源管理器(ResourceManager)
主要负责管理任务管理器(TaskManager)的插槽(slot),TaskManger插槽是Flink中定义的处理资源单元。Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、Mesos、K8s,以及standalone部署。当JobManager申请插槽资源时,ResourceManager会将有空闲插槽的TaskManager分配给JobManager。如果ResourceManager没有足够的插槽来满足JobManager的请求,它还可以向资源提供平台发起会话,以提供启动TaskManager进程的容器。另外,ResourceManager还负责终止空闲的TaskManager,释放计算资源。

任务管理器(TaskManager)
Flink中的工作进程。通常在Flink中会有多个TaskManager运行,每一个TaskManager都包含了一定数量的插槽(slots)。插槽的数量限制了TaskManager能够执行的任务数量。启动之后,TaskManager会向资源管理器注册它的插槽;收到资源管理器的指令后,TaskManager就会将一个或者多个插槽提供给JobManager调用。JobManager就可以向插槽分配任务(tasks)来执行了。在执行过程中,一个TaskManager可以跟其它运行同一应用程序的TaskManager交换数据。

分发器(Dispatcher)
可以跨作业运行,它为应用提交提供了REST接口。当一个应用被提交执行时,分发器就会启动并将应用移交给一个JobManager。由于是REST接口,所以Dispatcher可以作为集群的一个HTTP接入点,这样就能够不受防火墙阻挡。Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。Dispatcher在架构中可能并不是必需的,这取决于应用提交运行的方式。

任务提交流程
我们来看看当一个应用提交执行时,Flink的各个组件是如何交互协作的:
Flink day01_第9张图片

上图是从一个较为高层级的视角,来看应用中各组件的交互协作。如果部署的集群环境不同(例如YARN,Mesos,Kubernetes,standalone等),其中一些步骤可以被省略,或是有些组件会运行在同一个JVM进程中。
具体地,如果我们将Flink集群部署到YARN上,那么就会有如下的提交流程:

Flink day01_第10张图片
Flink任务提交后,Client向HDFS上传Flink的Jar包和配置,之后向Yarn ResourceManager提交任务,ResourceManager分配Container资源并通知对应的NodeManager启动ApplicationMaster,ApplicationMaster启动后加载Flink的Jar包和配置构建环境,然后启动JobManager,之后ApplicationMaster向ResourceManager申请资源启动TaskManager,ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager,NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager,TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。

任务调度原理

Flink day01_第11张图片
客户端不是运行时和程序执行的一部分,但它用于准备并发送dataflow(JobGraph)给Master(JobManager),然后,客户端断开连接或者维持连接以等待接收计算结果。

当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager。由 Client 提交任务给 JobManager,JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。

Client 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming的任务),也可以不结束并等待结果返回。
JobManager 主要负责调度 Job 并协调 Task 做 checkpoint,职责上很像 Storm 的 Nimbus。从 Client 处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以 Task 的单元调度到各个 TaskManager 去执行。
TaskManager 在启动的时候就设置好了槽位数(Slot),每个 slot 能启动一个 Task,Task 为线程。从 JobManager 处接收需要部署的 Task,部署启动后,与自己的上游建立 Netty 连接,接收数据并处理。

TaskManger与Slots
Flink中每一个worker(TaskManager)都是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。
每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他job的subtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。
通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。
Flink day01_第12张图片
默认情况下,Flink允许子任务共享slot,即使它们是不同任务的子任务(前提是它们来自同一个job)。 这样的结果是,一个slot可以保存作业的整个管道。
Task Slot是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。

Flink day01_第13张图片
Flink day01_第14张图片

程序与数据流(DataFlow)
Flink day01_第15张图片
所有的Flink程序都是由三部分组成的: Source 、Transformation和Sink。
Source负责读取数据源,Transformation利用各种算子进行处理加工,Sink负责输出。

在运行时,Flink上运行的程序会被映射成“逻辑数据流”(dataflows),它包含了这三部分。每一个dataflow以一个或多个sources开始以一个或多个sinks结束。dataflow类似于任意的有向无环图(DAG)。在大部分情况下,程序中的转换运算(transformations)跟dataflow中的算子(operator)是一一对应的关系,但有时候,一个transformation可能对应多个operator。

执行图(ExecutionGraph)
由Flink程序直接映射成的数据流图是StreamGraph,也被称为逻辑流图,因为它们表示的是计算逻辑的高级视图。为了执行一个流处理程序,Flink需要将逻辑流图转换为物理数据流图(也叫执行图),详细说明程序的执行方式。

Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。
StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。
ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
Flink day01_第16张图片
并行度(Parallelism)
Flink程序的执行具有并行、分布式的特性。
在执行过程中,一个流(stream)包含一个或多个分区(stream partition),而每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中彼此互不依赖地执行。
一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。

Stream在算子之间传输数据的形式可以是one-to-one(forwarding)的模式也可以是redistributing的模式,具体是哪一种形式,取决于算子的种类。
One-to-one:stream(比如在source和map operator之间)维护着分区以及元素的顺序。那意味着map 算子的子任务看到的元素的个数以及顺序跟source 算子的子任务生产的元素的个数、顺序相同,map、fliter、flatMap等算子都是one-to-one的对应关系。

类似于spark中的窄依赖
Redistributing:stream(map()跟keyBy/window之间或者keyBy/window跟sink之间)的分区会发生改变。每一个算子的子任务依据所选择的transformation发送数据到不同的目标任务。例如,keyBy() 基于hashCode重分区、broadcast和rebalance会随机重新分区,这些算子都会引起redistribute过程,而redistribute过程就类似于Spark中的shuffle过程。
类似于spark中的宽依赖

任务链(Operator Chains)
相同并行度的one to one操作,Flink这样相连的算子链接在一起形成一个task,原来的算子成为里面的一部分。将算子链接成task是非常有效的优化:它能减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。链接的行为可以在编程API中进行指定。

Flink day01_第17张图片

你可能感兴趣的:(大数据,flink,大数据)