逆透视变换IPM模型

公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。

IPM模型

在解释自适应的IPM模型之前,首先需要了解使用相机的物理参数来描述IPM的基本模型[1](这篇文章虽然有点古老,但是从数学层面上阐述了IPM的数学模型)下图展示了相机坐标系,图像坐标系,以及世界坐标系之间的关系,其中(u,v)是像素单位,(r,c)和(X,Y,Z)是米制单位。

逆透视变换IPM模型_第1张图片

使用IPM的目的是将像素点(u,v)映射到世界坐标系下的(X,Y,Z),首先定义一个单位向量X'来表示相机的视角的方向(这里用“‘ ”来表示这是一个矢量)那么与X'正交的就是单位向量Y",该向量是与地面和相机的视角的方向都是正交的关系,IPM就是寻找到世界坐标系下的(X',Y',Z')与图像坐标系(u',v')之间的关系,以便将图像的像素映射到世界坐标系下。这里一定要注意根据单位的不同的,图像上的两种坐标系设置为(u',v')和(r',c').像素空间中的图像点(u',v')与米制单位空间中的(r',c')是相同点。他们之间的关系定义如下:

f2c30486d1bc40cc1d3d842b3a4295f1.png

这里说明一下K是像素与米单位之间的关系(Px/m),其实就是每米占多少个pixel.图像的宽度m,以及图像的高度n。相机的光学中心P在世界坐标系中的位置为(0,0,h)。光学中心的轴用O'表示,是与像平面是正交的(这里可以想象一下,肯定是正交的关系)。

逆透视变换IPM模型_第2张图片

我们近一步的通过下面的侧视图和俯视图的描述参数中,假设物体的高度为0,那么很容易的计算出世界坐标系中的投影图像,使用侧视图理解,X'方向上的点X可以写成像素点v,相机的倾斜角(theta0)和垂直角(theta)的函数。

b8cb0a3d21c045ba93b022806ad15ec2.png

倾斜角表示平行于地面的直线与光轴之间的角度(O')垂直角是从P到每个像素的线与O'之间的角度,利用上图中的几何学关系,我们可以推导出倾斜角和垂直角,这两个已知量是可以作为函数的参数,寻找两者之间的关系是我们发现从垂直的焦距fr开始,从中我们可以得到theta(V)。

75d1478769e1f11ee19a53467831f516.png

通过几何学之间的关系我们可以得到如下的关系式:

2f4a2b18e54bafb7b76a77bc59cf58e5.png

其中r_top是是指在(r',c’)坐标系下最高的图像点,

alpha_r是垂直方向上FOV的一半,

r_top在我们假设像素的坐标系中的v=1的时候是可以被推导出来的

b8d391e43b57ea2ee0d2f3a73aa11779.png

并且fr 是可以根据上两个式子推导出来的

4c2922dbe44f267505f881bb92fc502e.png

则θ(v) 可以表示为

ee1bc18ce20ee816e180de9284004dcd.png

最终我们根据上式子表示出 X(v)

逆透视变换IPM模型_第3张图片

请注意,世界坐标系中的X与图像平面的u无关。下一步,我们用俯视图求出Y,如图3所示:

逆透视变换IPM模型_第4张图片

这个关系可以用X和Y之间的比例表达式来推导:

dbb78847c81fe54c9cd97efa553db0dc.png

其中fc是水平焦距,可从:

33632e6deba94f52e2f148631ba610a8.png

与侧视图几何图形类似,C_right是(r',c')坐标中最右侧点的C值,a_c是水平视野的半角。当u值为n时,可获得C_right

f130d861fff12a8421d07adf500b4507.png

因此,fc和Y(u,v)可以定义为(12)、(13)。如果图像的宽度和高度相同(m=n),则fc与fr相同

逆透视变换IPM模型_第5张图片

Y(u,v)在世界坐标中的位置取决于(u,v),因为Y(u,v)包括X(v)。但该模型仅考虑从固定摄像机获取图像的情况。当从运动车辆获取图像时,由于车辆的运动,尤其是其俯仰方向,很难将图像转换为准确的鸟瞰图像。为了解决该问题,在该模型中还添加了相机俯仰方向(theta_p)上的角度,如下图所示。

逆透视变换IPM模型_第6张图片

             自适应IPM模型的侧视图,相机的俯仰角(ep)添加到基本IPM模型中

最后,通过将theta_p添加到原始theta_o,可以导出自适应IPM建模方程(14)

逆透视变换IPM模型_第7张图片

X(v,theat_p)取决于相机的俯仰角(theta_p),Y(u,v,theta_p)也取决于它,这意味着鸟瞰图像根据俯仰角进行适当补偿。

[1] Hanspeter A Mallot, Heinrich H Bulthoff, JJ Little, and ¨Stefan Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological cybernetics, 64(3):177–185, 1991.

资源

三维点云论文及相关应用分享

【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法

3D目标检测:MV3D-Net

三维点云分割综述(上)

3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)

win下使用QT添加VTK插件实现点云可视化GUI

JSNet:3D点云的联合实例和语义分割

大场景三维点云的语义分割综述

PCL中outofcore模块---基于核外八叉树的大规模点云的显示

基于局部凹凸性进行目标分割

基于三维卷积神经网络的点云标记

点云的超体素(SuperVoxel)

基于超点图的大规模点云分割

更多文章可查看:点云学习历史文章大汇总

SLAM及AR相关分享

【开源方案共享】ORB-SLAM3开源啦!

【论文速读】AVP-SLAM:自动泊车系统中的语义SLAM

【点云论文速读】StructSLAM:结构化线特征SLAM

SLAM和AR综述

常用的3D深度相机

AR设备单目视觉惯导SLAM算法综述与评价

SLAM综述(4)激光与视觉融合SLAM

Kimera实时重建的语义SLAM系统

SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM

易扩展的SLAM框架-OpenVSLAM

高翔:非结构化道路激光SLAM中的挑战

SLAM综述之Lidar SLAM

基于鱼眼相机的SLAM方法介绍

如果你对本文感兴趣,请后台发送“知识星球”获取二维码,务必按照“姓名+学校/公司+研究方向”备注加入免费知识星球,免费下载pdf文档,和更多热爱分享的小伙伴一起交流吧!

以上内容如有错误请留言评论,欢迎指正交流。如有侵权,请联系删除

扫描二维码

                   关注我们

让我们一起分享一起学习吧!期待有想法,乐于分享的小伙伴加入免费星球注入爱分享的新鲜活力。分享的主题包含但不限于三维视觉,点云,高精地图,自动驾驶,以及机器人等相关的领域。

分享及合作方式:微信“920177957”(需要按要求备注) 联系邮箱:[email protected],欢迎企业来联系公众号展开合作。

点一下“在看”你会更好看耶

逆透视变换IPM模型_第8张图片

你可能感兴趣的:(机器学习,人工智能,计算机视觉,python,编程语言)