如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!
运行结果如下:
主要代码:
import argparse
import logging
import math
import os
import random
import time
from copy import deepcopy
from pathlib import Path
from threading import Thread
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
logger = logging.getLogger(__name__)
def train(hyp, opt, device, tb_writer=None, wandb=None):
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = save_dir / 'results.txt'
# Save run settings
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
plots = not opt.evolve # create plots
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
train_path = data_dict['train']
test_path = data_dict['val']
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Model
pretrained = weights.endswith('.pt')
if pretrained:
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # load
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else:
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
# Freeze
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(4, device=device) # mean losses
if rank != -1:
dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
if rank in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# Multi-scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if rank != -1:
loss *= opt.world_size # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.
# Backward
scaler.scale(loss).backward()
# Optimize
if ni % accumulate == 0:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
# Print
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)
# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
# if tb_writer:
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard
elif plots and ni == 10 and wandb:
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')
if x.exists()]}, commit=False)
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
运行结果如下:
Python, C++, PHP语言学习参考实例连接:
C++学习参考实例:
C++实现图形界面五子棋游戏源码:
C++实现图形界面五子棋游戏源码_alicema1111的博客-CSDN博客_c++五子棋小游戏源代码
C++实现图形界面五子棋游戏源码2:
C++实现图形界面五子棋游戏源码2_alicema1111的博客-CSDN博客
C++ OpenCV相片视频人脸识别统计人数:
C++ OpenCV相片视频人脸识别统计人数_alicema1111的博客-CSDN博客
VS2017+PCL开发环境配置:
VS2017+PCL开发环境配置_alicema1111的博客-CSDN博客
VS2017+Qt+PCL点云开发环境配置:
VS2017+Qt+PCL开发环境配置_alicema1111的博客-CSDN博客
C++ OpenCV汽车检测障碍物与测距:
C++ OpenCV汽车检测障碍物与测距_alicema1111的博客-CSDN博客
Windows VS2017安装配置PCL点云库:
Windows VS2017安装配置PCL点云库_alicema1111的博客-CSDN博客
VS+VTK+Dicom(dcm)+CT影像切片窗体界面显示源码
VS+VTK+Dicom(dcm)+CT影像切片窗体界面显示源码_alicema1111的博客-CSDN博客
Python学习参考实例:
Python相片更换背景颜色qt窗体程序:
Python相片更换背景颜色qt窗体程序_alicema1111的博客-CSDN博客
OpenCV汽车识别检测数量统计:
OpenCV汽车识别检测数量统计_alicema1111的博客-CSDN博客
OpenCV视频识别检测人数跟踪统计:
OpenCV视频识别检测人数跟踪统计_alicema1111的博客-CSDN博客
OpenCV米粒检测数量统计:
OpenCV米粒检测数量统计_alicema1111的博客-CSDN博客
opencv人脸识别与变形哈哈镜:
opencv人脸识别与变形哈哈镜_alicema1111的博客-CSDN博客
OpenCV人脸检测打卡系统:
OpenCV人脸检测打卡系统_alicema1111的博客-CSDN博客
Python+OpenCV摄像头人脸识别:
Python+OpenCV摄像头人脸识别_alicema1111的博客-CSDN博客
Python+Opencv识别视频统计人数:
Python+Opencv识别视频统计人数_alicema1111的博客-CSDN博客_python 人数识别
Python+OpenCV图像人脸识别人数统计:
OpenCV图像人脸识别人数统计_alicema1111的博客-CSDN博客_opencv人数识别
python人脸头发身体部位识别人数统计:
python人脸头发身体部位识别人数统计_alicema1111的博客-CSDN博客
VS+QT+VTK三维网格图像显示GUI
VS+QT+VTK三维网格图像显示GUI_alicema1111的博客-CSDN博客
PHP网页框架:
PHP Laravel框架安装与配置后台管理前台页面显示:
PHP Laravel框架安装与配置后台管理前台页面显示_alicema1111的博客-CSDN博客