DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法

DBSCAN聚类算法三部分

1、DBSCAN原理、流程、参数设置、优缺点以及算法;

http://blog.csdn.net/zhouxianen1987/article/details/68945844

2、matlab代码实现; 

blog:http://blog.csdn.net/zhouxianen1987/article/details/68946169

code:http://download.csdn.net/detail/zhouxianen1987/9789230

3、C++代码实现及与matlab实例结果比较。

blog:http://blog.csdn.net/zhouxianen1987/article/details/68946278

code:http://download.csdn.net/detail/zhouxianen1987/9789231

DBSCAN(Density-based spatial clustering ofapplications with noise)是Martin Ester, Hans-PeterKriegel等人于1996年提出的一种基于密度的空间的数据聚类方法,该算法是最常用的一种聚类方法[1,2]。该算法将具有足够密度区域作为距离中心,不断生长该区域,算法基于一个事实:一个聚类可以由其中的任何核心对象唯一确定[4]。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类,优缺点总结如下[3,4]:

优点:

(1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类;

(2)与K-MEANS比较起来,不需要输入要划分的聚类个数;

(3)聚类簇的形状没有偏倚;

(4)可以在需要时输入过滤噪声的参数。

缺点:

(1)当数据量增大时,要求较大的内存支持I/O消耗也很大;

(2)当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难。

(3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”。

基本概念[5]:如下基本概念在[6]中有更为详细说明介绍。

(1)Eps邻域:给定对象半径Eps内的邻域称为该对象的Eps邻域;

(2)核心点(core point):如果对象的Eps邻域至少包含最小数目MinPts的对象,则称该对象为核心对象;

(3)边界点(edge point):边界点不是核心点,但落在某个核心点的邻域内;

(4)噪音点(outlier point):既不是核心点,也不是边界点的任何点;

(5)直接密度可达(directly density-reachable):给定一个对象集合D,如果p在q的Eps邻域内,而q是一个核心对象,则称对象p从对象q出发时是直接密度可达的;

(6)密度可达(density-reachable):如果存在一个对象链  p1, …,pi,.., pn,满足p1 = p 和pn = q,pi是从pi+1关于Eps和MinPts直接密度可达的,则对象p是从对象q关于Eps和MinPts密度可达的;

(7)密度相连(density-connected):如果存在对象O∈D,使对象p和q都是从O关于Eps和MinPts密度可达的,那么对象p到q是关于Eps和MinPts密度相连的。

(8)类(cluster):设非空集合,若满足:,

(a)且从密度可达,
(b)和密度相连。
则称构成一个类簇。

关于上面概念的解释

有关核心点、边界点、噪音点以及直接密度可达、密度可达和密度相连解释如图1[1]:

DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法_第1张图片

图1红色为核心点,黄色为边界点,蓝色为噪音点,minPts = 4,Eps是图中圆的半径大小有关“直接密度可达”和“密度可达”定义实例如图2所示[5]:其中,Eps用一个相应的半径表示,设MinPts=3,请分析Q,M,P,S,O,R这5个样本点之间的关系。

DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法_第2张图片

图2   “直接密度可达”和“密度可达”概念示意描述。根据前文基本概念的描述知道:由于有标记的各点­M、P、O和R的Eps近邻均包含3个以上的点,因此它们都是核对象;M­是从P“直接密度可达”;而Q则是从­M“直接密度可达”;基于上述结果,Q是从P“密度可达”;但P从Q无法“密度可达”(非对称)。类似地,S和R从O是“密度可达”的;O、R和S均是“密度相连”(对称)的。

 

DBSCAN算法原理[5]

(1)DBSCAN通过检查数据集中每点的Eps邻域来搜索簇,如果点p的Eps邻域包含的点多于MinPts个,则创建一个以p为核心对象的簇;

(2)然后,DBSCAN迭代地聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;

(3)当没有新的点添加到任何簇时,该过程结束。

 

有关算法的伪代码wiki百科中给出了,[5]用中文描述了其流程

DBSCAN算法伪代码描述:

输入:数据集D,给定点在邻域内成为核心对象的最小邻域点数:MinPts,邻域半径:Eps   

输出:簇集合

(1) 首先将数据集D中的所有对象标记为未处理状态
(2) for(数据集D中每个对象p) do
(3)    if (p已经归入某个簇或标记为噪声) then
(4)         continue;
(5)    else
(6)         检查对象p的Eps邻域 NEps(p) ;
(7)         if (NEps(p)包含的对象数小于MinPts) then
(8)                  标记对象p为边界点或噪声点;
(9)         else
(10)                 标记对象p为核心点,并建立新簇C, 并将p邻域内所有点加入C
(11)                 for (NEps(p)中所有尚未被处理的对象q)  do
(12)                       检查其Eps邻域NEps(q),若NEps(q)包含至少MinPts个对象,则将NEps(q)中未归入任何一个簇的对象加入C;
(13)                 end for
(14)        end if
(15)    end if
(16) end for

标记对象p为核心点,并建立新簇C, 并将p邻域内所有点加入C
       for (NEps(p)中所有尚未被处理的对象q)  do
             检查其Eps邻域NEps(q),若NEps(q)包含至少MinPts个对象,则将NEps(q)中未归入任何一个簇的对象加入C;
       end for

上面这段代码就厉害了,首先已知P是核心点,P点构成了一个簇C,簇中包含距离小于eps的样本。然后它判断P周围的这些样本是不是也是核心点,如果是,那意味着该核心点所行成的簇都可以加到C中来,这时使用了“密度可达”和“密度相连”的概念。

wiki百科中代码描述:

DBSCAN(D, eps, MinPts) {
   C = 0
   foreach point P in dataset D {
      ifP is visited
        continue next point
     mark P as visited
      NeighborPts = regionQuery(P, eps)
      ifsizeof(NeighborPts) < MinPts
        mark P as NOISE
     else {
        C = next cluster
        expandCluster(P, NeighborPts, C, eps, MinPts)
      }
   }
}
 
expandCluster(P, NeighborPts, C, eps, MinPts) {
   add Pto cluster C
   foreach point P' in NeighborPts {
      ifP' is not visited {
        mark P' as visited
        NeighborPts' = regionQuery(P', eps)
        if sizeof(NeighborPts') >= MinPts
           NeighborPts = NeighborPts joined with NeighborPts'
      }
      ifP' is not yet member of any cluster
        add P' to cluster C
   }
}
 
regionQuery(P, eps)
   returnall points within P's eps-neighborhood (including P)

时间复杂度:

(1)DBSCAN的基本时间复杂度是 O(N*找出Eps领域中的点所需要的时间), N是点的个数。最坏情况下时间复杂度是O(N2)

(2)在低维空间数据中,有一些数据结构如KD树,使得可以有效的检索特定点给定距离内的所有点,时间复杂度可以降低到O(NlogN)

空间复杂度:

低维和高维数据中,其空间都是O(N),对于每个点它只需要维持少量数据,即簇标号和每个点的标识(核心点或边界点或噪音点)

 

参数设置

DBSCAN共包括3个输入数据:数据集D,给定点在邻域内成为核心对象的最小邻域点数:MinPts,邻域半径:Eps,其中Eps和MinPts需要根据具体应用人为设定。

(1)  Eps的值可以使用绘制k-距离曲线(k-distance graph)方法得当,在k-距离曲线图明显拐点位置为对应较好的参数。若参数设置过小,大部分数据不能聚类;若参数设置过大,多个簇和大部分对象会归并到同一个簇中。

半径:半径是最难指定的 ,大了,圈住的就多了,簇的个数就少了;反之,簇的个数就多了,这对我们最后的结果是有影响的。我们这个时候K距离可以帮助我们来设定半径r,也就是要找到突变点,比如:

DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法_第3张图片

以上虽然是一个可取的方式,但是有时候比较麻烦 ,大部分还是都试一试进行观察,用k距离需要做大量实验来观察,很难一次性把这些值都选准。 

K-距离:K距离的定义在DBSCAN算法原文中给出了详细解说,给定K邻域参数k,对于数据中的每个点,计算对应的第k个最近邻域距离,并将数据集所有点对应的最近邻域距离按照降序方式排序,称这幅图为排序的k距离图,选择该图中第一个谷值点位置对应的k距离值设定为Eps。一般将k值设为4。原文如下[2]:

DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法_第4张图片

DBSCAN算法研究(1)--DBSCAN原理、流程、参数设置、优缺点以及算法_第5张图片

(2)  MinPts的选取有一个指导性的原则(a rule of thumb),MinPts≥dim+1,其中dim表示待聚类数据的维度。MinPts设置为1是不合理的,因为设置为1,则每个独立点都是一个簇,MinPts≤2时,与层次距离最近邻域结果相同,因此,MinPts必须选择大于等于3的值。若该值选取过小,则稀疏簇中结果由于密度小于MinPts,从而被认为是边界点儿不被用于在类的进一步扩展;若该值过大,则密度较大的两个邻近簇可能被合并为同一簇。因此,该值是否设置适当会对聚类结果造成较大影响。

 

https://blog.csdn.net/huacha__/article/details/81094891

https://www.cnblogs.com/pinard/p/6208966.html

https://www.cnblogs.com/pinard/p/6217852.html

你可能感兴趣的:(机器学习)