Python-jieba分词


一. Selenium爬取百度百科摘要

        简单给出Selenium爬取百度百科5A级景区的代码:

复制代码
 1 # coding=utf-8  
 2 """ 
 3 Created on 2015-12-10 @author: Eastmount  
 4 """  
 5   
 6 import time          
 7 import re          
 8 import os  
 9 import sys
10 import codecs
11 import shutil
12 from selenium import webdriver      
13 from selenium.webdriver.common.keys import Keys      
14 import selenium.webdriver.support.ui as ui      
15 from selenium.webdriver.common.action_chains import ActionChains  
16   
17 #Open PhantomJS  
18 driver = webdriver.PhantomJS(executable_path="G:\phantomjs-1.9.1-windows\phantomjs.exe")  
19 #driver = webdriver.Firefox()  
20 wait = ui.WebDriverWait(driver,10)
21 
22 #Get the Content of 5A tourist spots  
23 def getInfobox(entityName, fileName):  
24     try:  
25         #create paths and txt files
26         print u'文件名称: ', fileName
27         info = codecs.open(fileName, 'w', 'utf-8')  
28 
29         #locate input  notice: 1.visit url by unicode 2.write files
30         #Error: Message: Element not found in the cache -
31         #       Perhaps the page has changed since it was looked up
32         #解决方法: 使用Selenium和Phantomjs
33         print u'实体名称: ', entityName.rstrip('\n') 
34         driver.get("http://baike.baidu.com/")  
35         elem_inp = driver.find_element_by_xpath("//form[@id='searchForm']/input")  
36         elem_inp.send_keys(entityName)  
37         elem_inp.send_keys(Keys.RETURN)  
38         info.write(entityName.rstrip('\n')+'\r\n')  #codecs不支持'\n'换行  
39   
40         #load content 摘要
41         elem_value = driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
42         for value in elem_value:
43             print value.text
44             info.writelines(value.text + '\r\n')
45 
46         #爬取文本信息
47         #爬取所有段落
的内容 class='para-title'为标题 [省略] 48 time.sleep(2) 49 50 except Exception,e: #'utf8' codec can't decode byte 51 print "Error: ",e 52 finally: 53 print '\n' 54 info.close() 55 56 #Main function 57 def main(): 58 #By function get information 59 path = "BaiduSpider\\" 60 if os.path.isdir(path): 61 shutil.rmtree(path, True) 62 os.makedirs(path) 63 source = open("Tourist_spots_5A_BD.txt", 'r') 64 num = 1 65 for entityName in source: 66 entityName = unicode(entityName, "utf-8") 67 if u'故宫' in entityName: #else add a '?' 68 entityName = u'北京故宫' 69 name = "%04d" % num 70 fileName = path + str(name) + ".txt" 71 getInfobox(entityName, fileName) 72 num = num + 1 73 print 'End Read Files!' 74 source.close() 75 driver.close() 76 77 if __name__ == '__main__': 78 main()
复制代码

        内容如下图所示,共204个国家5A级景点的摘要信息。这里就不再叙述:

 

二. Jieba中文分词

        Python中分分词工具很多,包括盘古分词、Yaha分词、Jieba分词等。
        中文分词库:http://www.oschina.net/project/tag/264/segment
        其中它们的基本用法都相差不大,但是Yaha分词不能处理如“黄琉璃瓦顶”或“圜丘坛”等词,所以使用了结巴分词。

        1.安装及入门介绍
        参考地址:http://www.oschina.net/p/jieba
        下载地址:https://pypi.python.org/pypi/jieba/
        Python 2.0我推荐使用"pip install jieba"或"easy_install jieba"全自动安装,再通过import jieba来引用(第一次import时需要构建Trie树,需要等待几秒时间)。
        安装时如果出现错误"unknown encoding: cp65001",输入"chcp 936"将编码方式由utf-8变为简体中文gbk。


        结巴中文分词涉及到的算法包括:
        (1) 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG);
        (2) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合;
        (3) 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法。

        结巴中文分词支持的三种分词模式包括:
        (1) 精确模式:试图将句子最精确地切开,适合文本分析;
        (2) 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义问题;
        (3) 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
        同时结巴分词支持繁体分词和自定义字典方法。

复制代码
 1 #encoding=utf-8
 2 import jieba
 3 
 4 #全模式
 5 text = "我来到北京清华大学"
 6 seg_list = jieba.cut(text, cut_all=True)
 7 print u"[全模式]: ", "/ ".join(seg_list) 
 8 
 9 #精确模式
10 seg_list = jieba.cut(text, cut_all=False)
11 print u"[精确模式]: ", "/ ".join(seg_list)
12 
13 #默认是精确模式
14 seg_list = jieba.cut(text)
15 print u"[默认模式]: ", "/ ".join(seg_list) 
16 
17 #新词识别 “杭研”并没有在词典中,但是也被Viterbi算法识别出来了
18 seg_list = jieba.cut("他来到了网易杭研大厦") 
19 print u"[新词识别]: ", "/ ".join(seg_list)
20 
21 #搜索引擎模式
22 seg_list = jieba.cut_for_search(text) 
23 print u"[搜索引擎模式]: ", "/ ".join(seg_list)
复制代码

        输出如下图所示:

        代码中函数简单介绍如下:
        jieba.cut():第一个参数为需要分词的字符串,第二个cut_all控制是否为全模式。
        jieba.cut_for_search():仅一个参数,为分词的字符串,该方法适合用于搜索引擎构造倒排索引的分词,粒度比较细。
        其中待分词的字符串支持gbk\utf-8\unicode格式。返回的结果是一个可迭代的generator,可使用for循环来获取分词后的每个词语,更推荐使用转换为list列表。

        2.添加自定义词典
        由于"国家5A级景区"存在很多旅游相关的专有名词,举个例子:
        [输入文本] 故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等
        [精确模式] 故宫/的/著名景点/包括/乾/清宫/、/太和殿/和/黄/琉璃瓦/等
        [全 模 式] 故宫/的/著名/著名景点/景点/包括/乾/清宫/太和/太和殿/和/黄/琉璃/琉璃瓦/等
        显然,专有名词"乾清宫"、"太和殿"、"黄琉璃瓦"(假设为一个文物)可能因分词而分开,这也是很多分词工具的又一个缺陷。但是Jieba分词支持开发者使用自定定义的词典,以便包含jieba词库里没有的词语。虽然结巴有新词识别能力,但自行添加新词可以保证更高的正确率,尤其是专有名词。
        基本用法:jieba.load_userdict(file_name) #file_name为自定义词典的路径
        词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略,ns为地点名词),用空格隔开。
        强烈推荐一篇词性标注文章,链接如下:
        http://www.hankcs.com/nlp/part-of-speech-tagging.html

复制代码
 1 #encoding=utf-8
 2 import jieba
 3 
 4 #导入自定义词典
 5 jieba.load_userdict("dict.txt")
 6 
 7 #全模式
 8 text = "故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等"
 9 seg_list = jieba.cut(text, cut_all=True)
10 print u"[全模式]: ", "/ ".join(seg_list) 
11 
12 #精确模式
13 seg_list = jieba.cut(text, cut_all=False)
14 print u"[精确模式]: ", "/ ".join(seg_list)
15 
16 #搜索引擎模式
17 seg_list = jieba.cut_for_search(text) 
18 print u"[搜索引擎模式]: ", "/ ".join(seg_list)
复制代码

        输出结果如下所示,其中专有名词连在一起,即"乾清宫"和"黄琉璃瓦"。


        3.关键词提取
        在构建VSM向量空间模型过程或者把文本转换成数学形式计算中,你需要运用到关键词提取的技术,这里就再补充该内容,而其他的如词性标注、并行分词、获取词位置和搜索引擎就不再叙述了。
        基本方法:jieba.analyse.extract_tags(sentence, topK) 
        需要先import jieba.analyse,其中sentence为待提取的文本,topK为返回几个TF/IDF权重最大的关键词,默认值为20。

复制代码
 1 #encoding=utf-8
 2 import jieba
 3 import jieba.analyse
 4 
 5 #导入自定义词典
 6 jieba.load_userdict("dict.txt")
 7 
 8 #精确模式
 9 text = "故宫的著名景点包括乾清宫、太和殿和午门等。其中乾清宫非常精美,午门是紫禁城的正门,午门居中向阳。"
10 seg_list = jieba.cut(text, cut_all=False)
11 print u"分词结果:"
12 print "/".join(seg_list)
13 
14 #获取关键词
15 tags = jieba.analyse.extract_tags(text, topK=3)
16 print u"关键词:"
17 print " ".join(tags)
复制代码

        输出结果如下,其中"午门"出现3次、"乾清宫"出现2次、"著名景点"出现1次,按照顺序输出提取的关键词。如果topK=5,则输出:"午门 乾清宫 著名景点 太和殿 向阳"。

>>> 
分词结果:
故宫/的/著名景点/包括/乾清宫/、/太和殿/和/午门/等/。/其中/乾清宫/非常/精美/,/午门/是/紫禁城/的/正门/,/午门/居中/向阳/。
关键词:
午门 乾清宫 著名景点
>>> 


        4.对百度百科获取摘要分词
        从BaiduSpider文件中读取0001.txt~0204.txt文件,分别进行分词处理再保存。

复制代码
 1 #encoding=utf-8
 2 import sys
 3 import re
 4 import codecs
 5 import os
 6 import shutil
 7 import jieba
 8 import jieba.analyse
 9 
10 #导入自定义词典
11 jieba.load_userdict("dict_baidu.txt")
12 
13 #Read file and cut
14 def read_file_cut():
15     #create path
16     path = "BaiduSpider\\"
17     respath = "BaiduSpider_Result\\"
18     if os.path.isdir(respath):
19         shutil.rmtree(respath, True)
20     os.makedirs(respath)
21 
22     num = 1
23     while num<=204:
24         name = "%04d" % num 
25         fileName = path + str(name) + ".txt"
26         resName = respath + str(name) + ".txt"
27         source = open(fileName, 'r')
28         if os.path.exists(resName):
29             os.remove(resName)
30         result = codecs.open(resName, 'w', 'utf-8')
31         line = source.readline()
32         line = line.rstrip('\n')
33         
34         while line!="":
35             line = unicode(line, "utf-8")
36             seglist = jieba.cut(line,cut_all=False)  #精确模式
37             output = ' '.join(list(seglist))         #空格拼接
38             print output
39             result.write(output + '\r\n')
40             line = source.readline()
41         else:
42             print 'End file: ' + str(num)
43             source.close()
44             result.close()
45         num = num + 1
46     else:
47         print 'End All'
48 
49 #Run function
50 if __name__ == '__main__':
51     read_file_cut()
复制代码

        运行结果如下图所示:


        5.去除停用词
        在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为Stop Words(停用词)。这些停用词都是人工输入、非自动化生成的,生成后的停用词会形成一个停用词表。但是,并没有一个明确的停用词表能够适用于所有的工具。甚至有一些工具是明确地避免使用停用词来支持短语搜索的。[参考百度百科]

复制代码
 1 #encoding=utf-8
 2 import jieba
 3 
 4 #去除停用词
 5 stopwords = {}.fromkeys(['', '包括', '', ''])
 6 text = "故宫的著名景点包括乾清宫、太和殿和午门等。其中乾清宫非常精美,午门是紫禁城的正门。"
 7 segs = jieba.cut(text, cut_all=False)
 8 final = ''
 9 for seg in segs:
10     seg = seg.encode('utf-8')
11     if seg not in stopwords:
12             final += seg
13 print final
14 #输出:故宫著名景点乾清宫、太和殿和午门。其中乾清宫非常精美,午门紫禁城正门。
15 
16 seg_list = jieba.cut(final, cut_all=False)
17 print "/ ".join(seg_list)
18 #输出:故宫/ 著名景点/ 乾清宫/ 、/ 太和殿/ 和/ 午门/ 。/ 其中/ 乾清宫/ 非常/ 精美/ ,/ 午门/ 紫禁城/ 正门/ 。
复制代码

 

 

三. 基于VSM的文本聚类算法

        这部分主要参考2008年上海交通大学姚清坛等《基于向量空间模型的文本聚类算法》的论文,因为我的实体对齐使用InfoBox存在很多问题,发现对齐中会用到文本内容及聚类算法,所以简单讲述下文章一些知识。

 
        文本聚类的主要依据聚类假设是:同类的文档相似度较大,而非同类文档相似度较小。同时使用无监督学习方法,聚类不需要训练过程以及不需要预先对文档手工标注类别,因此具有较高的灵活性和自动化处理能力。主要分为以下部分:
        (1) 预处理常用方法
        文本信息预处理(词性标注、语义标注),构建统计词典,对文本进行词条切分,完成文本信息的分词过程。
        (2) 文本信息的特征表示
        采用方法包括布尔逻辑型、概率型、混合型和向量空间模型。其中向量空间模型VSM(Vector Space Model)是将文档映射成向量的形式,(T1, T2, ..., Tn)表示文档词条,(W1, W2, ..., Wn)文档词条对应权重。建立文本特征主要用特征项或词条来表示目标文本信息,构造评价函数来表示词条权重,尽最大限度区别不同的文档。
        (3) 文本信息特征缩减
        VSM文档特征向量维数众多。因此,在文本进行聚类之前,应用文本信息特征集进行缩减,针对每个特征词的权重排序,选取最佳特征,包括TF-IDF。推荐向量稀疏表示方法,提升聚类的效果,其中(D1, D2, ..., Dn)表示权重不为0的特征词条。
        (4) 文本聚类
        文本内容表示成数学课分析形势后,接下来就是在此数学基础上进行文本聚类。包括基于概率方法和基于距离方法。其中基于概率是利用贝叶斯概率理论,概率分布方式;基于聚类是特征向量表示文档(文档看成一个点),通过计算点之间的距离,包括层次聚类法和平面划分法。

  

你可能感兴趣的:(python,Python—实例,python基础爬虫)