计算理论导引 阅读笔记-1

图灵机与可计算性理论

在介绍图灵机前先来简略了解一下哥德尔完备性:

哥德尔完备性定理成立。它声称对于任何一阶理论T和在这个理论中的任何句子S,有一个S的自T的形式演绎,当且仅当S被T的所有模型满足。这个更一般的定理被隐含使用,例如,在一个句子被证实可以用群论的公理证明的时候,通过考虑一个任意的群并证实这个句子被这个群所满足。完备性定理是一阶逻辑的中心性质,不在所有逻辑中成立。比如二阶逻辑就没有完备性定理。

个人感觉图灵完备是和完备性证明分不开的,下面是图灵完备的定义:

可图灵指在可计算性理论中,编程语言或任意其他的逻辑系统如具有等用于通用图灵机的计算能力。换言之,此系统可与通用图灵机互相模拟。

上面的解释比较抽象,简单来说,能够抽象成图灵机的系统或编程语言就是图灵完备的;一切可计算的问题图灵机都能计算,因此满足这样要求的逻辑系统、装置或者编程语言就叫图灵完备的。

你可能感兴趣的:(计算理论导引 阅读笔记-1)