激活函数与随机正则

不管其他领域的鄙视链,在激活函数领域,大家公式的鄙视链应该是:Elus > Relu > Sigmoid ,这些激活函数都有自身的缺陷, sigmoid容易饱和,Elus与Relu缺乏随机因素。

在神经网络的建模过程中,模型很重要的性质就是非线性,同时为了模型泛化能力,需要加入随机正则,例如dropout(随机置一些输出为0,其实也是一种变相的随机非线性激活), 而随机正则与非线性激活是分开的两个事情, 而其实模型的输入是由非线性激活与随机正则两者共同决定的。

GELUs正是在激活中引入了随机正则的思想,是一种对神经元输入的概率描述,直观上更符合自然的认识,同时实验效果要比Relus与ELUs都要好。

GELUs其实是 dropout、zoneout、Relus的综合,GELUs对于输入乘以一个0,1组成的mask,而该mask的生成则是依概率随机的依赖于输入。假设输入为X, mask为m,则m服从一个伯努利分布(Φ(x), Φ ( x ) = P ( X < = x ) , X 服 从 标 准 正 太 分 布),这么选择是因为神经元的输入趋向于正太分布,这么设定使得当输入x减小的时候,输入会有一个更高的概率被dropout掉,这样的激活变换就会随机依赖于输入了。

你可能感兴趣的:(机器学习,概率论,机器学习,深度学习)