动手学习深度学习Task6+Task7+Task8

批量归一化(BatchNormalization)

对输入的标准化(浅层模型)

处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。
标准化处理输入数据使各个特征的分布相近

批量归一化(深度模型)

利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

残差网络(ResNet)

深度学习的问题:深度CNN网络达到一定深度后再一味地增加层数并不能带来进一步地分类性能提高,反而会招致网络收敛变得更慢,准确率也变得更差。

残差块(Residual Block)

恒等映射:
左边:f(x)=x
右边:f(x)-x=0 (易于捕捉恒等映射的细微波动)


image.png

在残差块中,输⼊可通过跨层的数据线路更快 地向前传播。

优化在深度学习中的挑战

  1. 局部最小值
  2. 鞍点
  3. 梯度消失

局部最小值:


image.png

鞍点


image.png

梯度消失
image.png

Jensen 不等式

性质

  1. 无局部极小值
  2. 与凸集的关系
  3. 二阶条件

梯度下降

沿梯度反方向移动自变量可以减小函数值
不同学习率的设定:


image.png

image.png
image.png

局部极小值


image.png

word2vec

Skip-Gram 跳字模型
假设背景词由中心词生成

image.png

CBOW (continuous bag-of-words) 连续词袋模型:假设中心词由背景词生成
image.png

文本数据中一般会出现一些高频词,如英文中的“the”“a”和“in”。通常来说,在一个背景窗口中,一个词(如“chip”)和较低频词(如“microprocessor”)同时出现比和较高频词(如“the”)同时出现对训练词嵌入模型更有益。因此,训练词嵌入模型时可以对词进行二次采样。 具体来说,数据集中每个被索引词 将有一定概率被丢弃,该丢弃概率为


image.png

Skip-Gram 跳字模型

image.png

负采样近似

image.png

GloVe 全局向量的词嵌入

GloVe 官方 提供了多种规格的预训练词向量,语料库分别采用了维基百科、CommonCrawl和推特等,语料库中词语总数也涵盖了从60亿到8,400亿的不同规模,同时还提供了多种词向量维度供下游模型使用。

torchtext.vocab 中已经支持了 GloVe, FastText, CharNGram 等常用的预训练词向量,我们可以通过声明 torchtext.vocab.GloVe 类的实例来加载预训练好的 GloVe 词向量。

文本情感分类

文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。

同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开:

文本情感分类数据集
使用循环神经网络进行情感分类
使用卷积神经网络进行情感分类

使用循环神经网络

image.png

使用卷积神经网络

TextCNN 模型

TextCNN 模型主要使用了一维卷积层和时序最大池化层。假设输入的文本序列由 n 个词组成,每个词用 d 维的词向量表示。那么输入样本的宽为 n,输入通道数为 d。TextCNN 的计算主要分为以下几步。

  1. 定义多个一维卷积核,并使用这些卷积核对输入分别做卷积计算。宽度不同的卷积核可能会捕捉到不同个数的相邻词的相关性。
  2. 对输出的所有通道分别做时序最大池化,再将这些通道的池化输出值连结为向量。
  3. 通过全连接层将连结后的向量变换为有关各类别的输出。这一步可以使用丢弃层应对过拟合。

下图用一个例子解释了 TextCNN 的设计。这里的输入是一个有 11 个词的句子,每个词用 6 维词向量表示。因此输入序列的宽为 11,输入通道数为 6。给定 2 个一维卷积核,核宽分别为 2 和 4,输出通道数分别设为 4 和 5。因此,一维卷积计算后,4 个输出通道的宽为 11−2+1=10,而其他 5 个通道的宽为 11−4+1=8。尽管每个通道的宽不同,我们依然可以对各个通道做时序最大池化,并将 9 个通道的池化输出连结成一个 9 维向量。最终,使用全连接将 9 维向量变换为 2 维输出,即正面情感和负面情感的预测。

Image Name

你可能感兴趣的:(动手学习深度学习Task6+Task7+Task8)