管程即 monitor 是阻塞式的悲观锁实现并发控制,本文我们将通过非阻塞式的乐观锁的来实现并发控制
有如下需求,保证 account.withdraw 取款方法的线程安全
package cn.itcast;
import java.util.ArrayList;
import java.util.List;
interface Account {
// 获取余额
Integer getBalance();
// 取款
void withdraw(Integer amount);
/**
* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
* 如果初始余额为 10000 那么正确的结果应当是 0
*/
static void demo(Account account) {
List<Thread> ts = new ArrayList<>();
long start = System.nanoTime();
for (int i = 0; i < 1000; i++) {
ts.add(new Thread(() -> {
account.withdraw(10);
}));
}
//将线程一个个启动
ts.forEach(Thread::start);
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(account.getBalance()
+ " cost: " + (end-start)/1000_000 + " ms");
}
}
原有实现并不是线程安全的
class AccountUnsafe implements Account {
private Integer balance;
public AccountUnsafe(Integer balance) {
this.balance = balance;
}
@Override
public Integer getBalance() {
return balance;
}
@Override
public void withdraw(Integer amount) {
balance -= amount;
}
}
解决思路-无锁(乐观重试)
class AccountSafe implements Account {
private AtomicInteger balance;
public AccountSafe(Integer balance) {
this.balance = new AtomicInteger(balance);
}
@Override
public Integer getBalance() {
return balance.get();
}
@Override
public void withdraw(Integer amount) {
while (true) {
int prev = balance.get();
int next = prev - amount;
if (balance.compareAndSet(prev, next)) {
break;
}
}
// 可以简化为下面的方法
// balance.addAndGet(-1 * amount);
}
}
前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?
public void withdraw(Integer amount) {
while(true) {
// 需要不断尝试,直到成功为止
while (true) {
// 比如拿到了旧值 1000
int prev = balance.get();
// 在这个基础上 1000-10 = 990
int next = prev - amount;
/*
compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值
- 不一致了,next 作废,返回 false 表示失败
比如,别的线程已经做了减法,当前值已经被减成了 990
那么本线程的这次 990 就作废了,进入 while 下次循环重试
- 一致,以 next 设置为新值,返回 true 表示成功
*/
if (balance.compareAndSet(prev, next)) {
break;
}
//或者简洁一点:
//balance.getAndAdd(-1 * amount);
}
}
}
其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。
工作流程:
注意;
获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取 它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
注意
volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原 子性)
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果。
结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
J.U.C 并发包提供了:
AtomicInteger i = new AtomicInteger(0);
// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());
// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());
// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());
// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());
// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));
// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));
// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));
// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));
// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的
// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 final
System.out.println(i.getAndAccumulate(10, (p, x) -> p + x));
// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));
说明:
以上方法都是以CAS为基础进行了封装,保证了方法的原子性和变量的可见性。
updateAndGet方法的手动实现:
public static int updateAndGet(AtomicInteger i, IntUnaryOperator operator){
while (true){
int prev = i.get();
int next = operator.applyAsInt(prev);
if(i.compareAndSet(prev,next)){
return next;
}
}
}
为什么需要原子引用类型?
实际开发的过程中我们使用的不一定是int、long等基本数据类型,也有可能时BigDecimal这样的类型,这时就需要用到原子引用作为容器。原子引用设置值使用的是unsafe.compareAndSwapObject()
方法。原子引用中表示数据的类型需要重写equals()
方法。
有如下方法
public interface DecimalAccount {
// 获取余额
BigDecimal getBalance();
// 取款
void withdraw(BigDecimal amount);
/**
* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
* 如果初始余额为 10000 那么正确的结果应当是 0
*/
static void demo(DecimalAccount account) {
List<Thread> ts = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
ts.add(new Thread(() -> {
account.withdraw(BigDecimal.TEN);
}));
}
ts.forEach(Thread::start);
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
System.out.println(account.getBalance());
}
}
试着提供不同的 DecimalAccount 实现,实现安全的取款操作
不安全实现
class DecimalAccountUnsafe implements DecimalAccount {
BigDecimal balance;
public DecimalAccountUnsafe(BigDecimal balance) {
this.balance = balance;
}
@Override
public BigDecimal getBalance() {
return balance;
}
@Override
public void withdraw(BigDecimal amount) {
BigDecimal balance = this.getBalance();
this.balance = balance.subtract(amount);
}
}
安全实现-使用锁
class DecimalAccountSafeLock implements DecimalAccount {
private final Object lock = new Object();
BigDecimal balance;
public DecimalAccountSafeLock(BigDecimal balance) {
this.balance = balance;
}
@Override
public BigDecimal getBalance() {
return balance;
}
@Override
public void withdraw(BigDecimal amount) {
synchronized (lock) {
BigDecimal balance = this.getBalance();
this.balance = balance.subtract(amount);
}
}
}
安全实现-使用 CAS
class DecimalAccountSafeCas implements DecimalAccount {
AtomicReference<BigDecimal> ref;
public DecimalAccountSafeCas(BigDecimal balance) {
ref = new AtomicReference<>(balance);
}
@Override
public BigDecimal getBalance() {
return ref.get();
}
@Override
public void withdraw(BigDecimal amount) {
while (true) {
BigDecimal prev = ref.get();
BigDecimal next = prev.subtract(amount);
if (ref.compareAndSet(prev, next)) {
break;
}
}
}
}
测试代码
DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));
运行结果
4310 cost: 425 ms
0 cost: 285 ms
0 cost: 274 ms
ABA 问题
static AtomicReference<String> ref = new AtomicReference<>("A");
public static void main(String[] args) throws InterruptedException {
log.debug("main start...");
// 获取值 A
// 这个共享变量被它线程修改过?
String prev = ref.get();
other();
sleep(1);
// 尝试改为 C
log.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}
private static void other() {
new Thread(() -> {
log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B"));
}, "t1").start();
sleep(0.5);
new Thread(() -> {
log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));
}, "t2").start();
}
输出
11:29:52.325 c.Test36 [main] - main start...
11:29:52.379 c.Test36 [t1] - change A->B true
11:29:52.879 c.Test36 [t2] - change B->A true
11:29:53.880 c.Test36 [main] - change A->C true
主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,如果主线程 希望:
只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号
AtomicStampedReference
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
public static void main(String[] args) throws InterruptedException {
log.debug("main start...");
// 获取值 A
String prev = ref.getReference();
// 获取版本号
int stamp = ref.getStamp();
log.debug("版本 {}", stamp);
// 如果中间有其它线程干扰,发生了 ABA 现象
other();
sleep(1);
// 尝试改为 C
log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}
private static void other() {
new Thread(() -> {
log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B",
ref.getStamp(), ref.getStamp() + 1));
log.debug("更新版本为 {}", ref.getStamp());
}, "t1").start();
sleep(0.5);
new Thread(() -> {
log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A",
ref.getStamp(), ref.getStamp() + 1));
log.debug("更新版本为 {}", ref.getStamp());
}, "t2").start();
}
输出为
15:41:34.891 c.Test36 [main] - main start...
15:41:34.894 c.Test36 [main] - 版本 0
15:41:34.956 c.Test36 [t1] - change A->B true
15:41:34.956 c.Test36 [t1] - 更新版本为 1
15:41:35.457 c.Test36 [t2] - change B->A true
15:41:35.457 c.Test36 [t2] - 更新版本为 2
15:41:36.457 c.Test36 [main] - change A->C false
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C
,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference
AtomicMarkableReference
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference
class GarbageBag {
String desc;
public GarbageBag(String desc) {
this.desc = desc;
}
public void setDesc(String desc) {
this.desc = desc;
}
@Override
public String toString() {
return super.toString() + " " + desc;
}
}
@Slf4j
public class TestABAAtomicMarkableReference {
public static void main(String[] args) throws InterruptedException {
GarbageBag bag = new GarbageBag("装满了垃圾");
// 参数2 mark 可以看作一个标记,表示垃圾袋满了
AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);
log.debug("主线程 start...");
GarbageBag prev = ref.getReference();
log.debug(prev.toString());
new Thread(() -> {
log.debug("打扫卫生的线程 start...");
bag.setDesc("空垃圾袋");
while (!ref.compareAndSet(bag, bag, true, false)) {}
log.debug(bag.toString());
}).start();
Thread.sleep(1000);
log.debug("主线程想换一只新垃圾袋?");
boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false);
log.debug("换了么?" + success);
log.debug(ref.getReference().toString());
}
}
输出
2019-10-13 15:30:09.264 [main] 主线程 start...
2019-10-13 15:30:09.270 [main] cn.itcast.GarbageBag@5f0fd5a0 装满了垃圾
2019-10-13 15:30:09.293 [Thread-1] 打扫卫生的线程 start...
2019-10-13 15:30:09.294 [Thread-1] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋
2019-10-13 15:30:10.294 [main] 主线程想换一只新垃圾袋?
2019-10-13 15:30:10.294 [main] 换了么?false
2019-10-13 15:30:10.294 [main] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋
可以注释掉打扫卫生线程代码,再观察输出
两者的区别:
AtomicStampedReference
需要我们传入整型变量作为版本号,来判定是否被更改过
AtomicMarkableReference
需要我们传入布尔变量作为标记,来判断是否被更改过
有如下方法
/**
参数1,提供数组、可以是线程不安全数组或线程安全数组
参数2,获取数组长度的方法
参数3,自增方法,回传 array, index
参数4,打印数组的方法
*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo(
Supplier<T> arraySupplier,
Function<T, Integer> lengthFun,
BiConsumer<T, Integer> putConsumer,
Consumer<T> printConsumer ) {
List<Thread> ts = new ArrayList<>();
T array = arraySupplier.get();
int length = lengthFun.apply(array);
for (int i = 0; i < length; i++) {
// 每个线程对数组作 10000 次操作
ts.add(new Thread(() -> {
for (int j = 0; j < 10000; j++) {
putConsumer.accept(array, j%length);
}
}));
}
ts.forEach(t -> t.start()); // 启动所有线程
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}); // 等所有线程结束
printConsumer.accept(array);
}
不安全的数组
demo(
()->new int[10],
(array)->array.length,
(array, index) -> array[index]++,
array-> System.out.println(Arrays.toString(array))
);
结果
[9870, 9862, 9774, 9697, 9683, 9678, 9679, 9668, 9680, 9698]
安全的数组
demo(
()-> new AtomicIntegerArray(10),
(array) -> array.length(),
(array, index) -> array.getAndIncrement(index),
array -> System.out.println(array)
);
结果
[10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现 异常
Exception in thread "main" java.lang.IllegalArgumentException: Must be volatile type
public class Test5 {
private volatile int field;
public static void main(String[] args) {
AtomicIntegerFieldUpdater fieldUpdater =
AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field");
Test5 test5 = new Test5();
fieldUpdater.compareAndSet(test5, 0, 10);
// 修改成功 field = 10
System.out.println(test5.field);
// 修改成功 field = 20
fieldUpdater.compareAndSet(test5, 10, 20);
System.out.println(test5.field);
// 修改失败 field = 20
fieldUpdater.compareAndSet(test5, 10, 30);
System.out.println(test5.field);
}
}
输出
10
20
20
我们使用前面所说原子整数也可以进行累加操作,不过JDK8之后提供了几个专门用来做累加的类,使用这些类做累加的性能更高
private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
T adder = adderSupplier.get();
long start = System.nanoTime();
List<Thread> ts = new ArrayList<>();
// 4 个线程,每人累加 50 万
for (int i = 0; i < 40; i++) {
ts.add(new Thread(() -> {
for (int j = 0; j < 500000; j++) {
action.accept(adder);
}
}));
}
ts.forEach(t -> t.start());
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(adder + " cost:" + (end - start)/1000_000);
}
比较 AtomicLong 与 LongAdder
for (int i = 0; i < 5; i++) {
demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}
输出
1000000 cost:43
1000000 cost:9
1000000 cost:7
1000000 cost:7
1000000 cost:7
1000000 cost:31
1000000 cost:27
1000000 cost:28
1000000 cost:24
1000000 cost:22
执行代码后,发现使用 LongAdder 比 AtomicLong 快2,3倍,使用 LongAdder 性能提升的原因很简单,就是在有竞争时,设置多个累加单元(但不会超过cpu的核心数),Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。
LongAddr的原理可以参考下面的文章:
Java 并发编程中篇
Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得。jdk8直接调用Unsafe.getUnsafe()
获得的unsafe不能用。
CAS、park、unpark等其底层调用的都是Unsafe的方法。这个名字不是说会引发线程的安全问题不安全unsafe,而是说操作的太过底层不建议编程人员直接使用。
我们通过反射编写一个工具类来拿到unsafe:
public class UnsafeAccessor {
static Unsafe unsafe;
static {
try {
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafe.setAccessible(true);
unsafe = (Unsafe) theUnsafe.get(null);
} catch (NoSuchFieldException | IllegalAccessException e) {
throw new Error(e);
}
}
static Unsafe getUnsafe() {
return unsafe;
}
}
unsafe实现字段更新
@Data
class Student {
volatile int id;
volatile String name;
}
Unsafe unsafe = UnsafeAccessor.getUnsafe();
Field id = Student.class.getDeclaredField("id");
Field name = Student.class.getDeclaredField("name");
// 获得成员变量的偏移量
long idOffset = UnsafeAccessor.unsafe.objectFieldOffset(id);
long nameOffset = UnsafeAccessor.unsafe.objectFieldOffset(name);
Student student = new Student();
// 使用 cas 方法替换成员变量的值
UnsafeAccessor.unsafe.compareAndSwapInt(student, idOffset, 0, 20); // 返回 true
UnsafeAccessor.unsafe.compareAndSwapObject(student, nameOffset, null, "张三"); // 返回 true
System.out.println(student);
输出
Student(id=20, name=张三)
unsafe实现原子整数
class AtomicData {
private volatile int data;
static final Unsafe unsafe;
static final long DATA_OFFSET;
static {
unsafe = UnsafeAccessor.getUnsafe();
try {
// data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性
DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data"));
} catch (NoSuchFieldException e) {
throw new Error(e);
}
}
public AtomicData(int data) {
this.data = data;
}
public void decrease(int amount) {
int oldValue;
while(true) {
// 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解
oldValue = data;
// cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 false
if (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) {
return;
}
}
}
public int getData() {
return data;
}
}
Account 实现
Account.demo(new Account() {
AtomicData atomicData = new AtomicData(10000);
@Override
public Integer getBalance() {
return atomicData.getData();
}
@Override
public void withdraw(Integer amount) {
atomicData.decrease(amount);
}
});