卷积神经网络 图像分割,卷积神经网络 图像识别

全卷积神经网络可以通过什么提高图像分割精度

全卷积神经网络可以通过神经网络的模型提高图像分割精度。全卷积神经网络解决方案也有很多。

百度/谷歌搜索过拟合overfitting,个人会优先尝试减小网络规模,比如层数、卷积滤波器个数、全连接层的单元数这些。

其他的比如Dropout,数据增强/扩充,正则,earlystop,batchnorm也都可以尝试。

全卷积神经网络隐含层:全卷积神经网络卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,在一些更为现代的算法中可能有Inception模块、残差块(residualblock)等复杂构筑。

在常见构筑中,卷积层和池化层为卷积神经网络特有。卷积层中的卷积核包含权重系数。全卷积神经网络而池化层不包含权重系数,因此在文献中,池化层可能不被认为是独立的层。

以LeNet-5为例,3类常见构筑在隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。

谷歌人工智能写作项目:神经网络伪原创

如何在matlab中设计一个卷积神经网络实现图像分割

CNN神经网络给图像分类(Matlab)

你要看你的图像是什么。如果是彩色数字,先转成灰度。用MNIST训练网络。如果是各种主题,用彩色的imageNET训练。如果你的数据量大到足以与数据集媲美,那么直接用你的数据训练网络即可。

在流行的数据集上训练完,你需要固定卷积池化层,只训练后面的全连接层参数,用你自己的数据集。CNN一是调整网络结构,几层卷积几层池化,卷积的模板大小等。

而是在确定结构上调整参数,weightscale,learningrate,reg等。

你用CNN做图像分类,无非是把CNN当成学习特征的手段,你可以吧网络看成两部分,前面的卷积层学习图像基本-中等-高层特征,后面的全连接层对应普通的神经网络做分类。

需要学习的话,首先你去看UFLDL教程。然后cs231n与其问别人,首先你看了imageNet数据集了吗?对于把流行数据集与自己数据混合训练模型的方法。如果两种数据十分相似,也未尝不可。

但是对于流行数据集而言,自己的标注数据量一般不会太大,如果是1:1000,1:100这种比例,那么可能不加自己的数据,完全用数据集训练的模型就能得到一个还好的结果。

如果自己的数据和数据集有些差别,那混在一起我认为自己的是在用自己的数据当做噪声加到数据集中。

cnn认为图像是局部相关的,而欺骗CNN的方法则主要出于,自然图像分布在一种流形结构中,训练的模型需要这种流形假设,而人工合成的图像由于添加非自然噪点,不满足模型假设,所以能用肉眼难分辨的噪声严重干扰分类结果。

如果二者相差过大,数据集是一种分布,你的数据是另一种,放到一起训练,我没试过,但我认为结果不会太好。这时候只能把数据集用来训练cnn的特征提取能力。而后用于分类的全连接层,视你的数据量调整规模。

视觉机器学习概括讲是怎么一回事,如何快速从0搞起?

这里面有些问题概念很多,真不是一句两句可以解释清楚的,所以只能初步说一下。问题一:什么是神经网络框架,什么是模型,两者之间是什么关系。

模型好比是一栋楼,楼的结构可以是茅草屋也可以是高楼大厦,神经网络是比较复杂的模型,框架结构就像是高楼大厦。问题二:图片标注后的机器学习又是什么,训练出的是模型还是神经网络首先要弄清什么是机器学习。

机器学习就是用信息(也叫训练样本)提供给机器让机器通过数学的手段(调整参数)找到其中的规律(获取经验),并用经验来解决给定信息涉及到的问题。

图片标注的目的也就是给机器提供信息,引导机器去提取标注的内容的特征规律。而训练出来的是模型,而模型的结构上讲属于神经网络(卷积神经网络)。问题三:行业上常见的、使用比较多的神经网络/模型又是什么?

视觉类的神经网络有三大类:1.图像分类,对于整个图像来判定其类别。这种模型一般解决不了常见的问题,运用不广泛。2.物体识别,用来检测图像内的物体并标出其具体位置和轮廓边框。

较常见的有CRNN和YOLO3.图像分割,将不规则的物体或者线条的阴影标出来。这里UNet用的比较多。问题四:如何从0开始搞一套视觉学习平台出来?

这里首先要搞懂什么叫卷积神经网络,其数学原理是怎么回事,然后还要有软工(前端、后端、应用平台架构)的经验才能把模型训练和管理、图片标注、模型服务这一整套东西搞出来,基本上没有一个大团队是不可能实现的。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

如何利用卷积神经网络提取图像特征

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

 

你可能感兴趣的:(cnn,深度学习,神经网络,算法)