卷积神经网络 语义分割,图像分割神经网络算法

全卷积神经网络可以通过什么提高图像分割精度

全卷积神经网络可以通过神经网络的模型提高图像分割精度。全卷积神经网络解决方案也有很多。

百度/谷歌搜索过拟合overfitting,个人会优先尝试减小网络规模,比如层数、卷积滤波器个数、全连接层的单元数这些。

其他的比如Dropout,数据增强/扩充,正则,earlystop,batchnorm也都可以尝试。

全卷积神经网络隐含层:全卷积神经网络卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,在一些更为现代的算法中可能有Inception模块、残差块(residualblock)等复杂构筑。

在常见构筑中,卷积层和池化层为卷积神经网络特有。卷积层中的卷积核包含权重系数。全卷积神经网络而池化层不包含权重系数,因此在文献中,池化层可能不被认为是独立的层。

以LeNet-5为例,3类常见构筑在隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。

谷歌人工智能写作项目:神经网络伪原创

传统的图像分割方法有哪些

1.基于阈值的分割方法灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类写作猫

阈值分割方法实际上是输入图像f到输出图像g的变化其中,T为阈值;对于物体的图像元素,g(i,j)=1,对于背景的图像元素,g(i,j)=0。

由此可见,阈值分割算法的关键是确定阈值,如果能确定一个适合的阈值就可准确地将图像分割开来。阈值确定后,阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。

阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于软件实现),它得到了广泛应用。

2.基于区域的分割方法区域生长和分裂合并法是两种典型的串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。

(1)区域生长区域生长的基本思想是将具有相似性质的像素集合起来构成区域。

具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。

将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。

(2)区域分裂合并区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。

分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。

分裂合并的假设是对于一幅图像,前景区域是由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。

当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。

3.基于边缘的分割方法基于边缘的分割方法是指通过边缘检测,即检测灰度级或者结构具有突变的地方,确定一个区域的终结,即另一个区域开始的地方。

不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。4.基于特定理论的分割方法图像分割至今尚无通用的自身理论。

随着各学科新理论和新方法的提出,出现了与一些特定理论、方法相结合的图像分割方法,主要有:基于聚类分析的图像分割方法、基于模糊集理论的分割方法等。

5.基于基因编码的分割方法基于基因编码的分割方法是指把图像背景和目标像素用不同的基因编码表示,通过区域性的划分,把图像背景和目标分离出来的方法。

该方法具有处理速度快的优点,但算法实现起来比较难。

6.基于小波变换的分割方法小波变换是近年来得到广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,并且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像处理和分析等许多方面得到应用。

基于小波变换的阈值图像分割方法的基本思想是首先由二进小波变换将图像的直方图分解为不同层次的小波系数,然后依据给定的分割准则和小波系数选择阈值门限,最后利用阈值标出图像分割的区域。

整个分割过程是从粗到细,由尺度变化来控制,即起始分割由粗略的L2(R)子空间上投影的直方图来实现,如果分割不理想,则利用直方图在精细的子空间上的小波系数逐步细化图像分割。

分割算法的计算会与图像尺寸大小呈线性变化。7.基于神经网络的分割方法近年来,人工神经网络识别技术已经引起了广泛的关注,并应用于图像分割。

基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。这种方法需要大量的训练数据。

神经网络存在巨量的连接,容易引入空间信息,能较好地解决图像中的噪声和不均匀问题。选择何种网络结构是这种方法要解决的主要问题。

神经网络做图像分类一定要用到gpu吗?

GPU最大的价值一直是“accelerating”(加速),GPU不是取代CPU,而是利用GPU的并行计算架构,来将并行计算的负载放到GPU上来处理从而极大的提升处理速度。

GPU本质上在异构计算架构上属于协处理器,常见的协处理器除了GPU,还有TPU、FPGA、ASIC等。神经网络图像分割,有很多适合GPU来做并行处理的算法。

而GPU相较于其它加速协处理芯片,有更好的可编程性。NVIDIA在GPU加速计算领域发展多年,已经形成了非常好的软件生态。

目前在深度学习的训练端,GPU的应用和部署已经极为普遍,说是标准配置也不为过。在推理端,NVIDIA也有布局T4GPU卡。深度神经网络用GPU相较纯CPU,能够提速几百倍,所以还是推荐GPU。

关于负载如何搭配硬件配置,选用什么型号的GPU卡还是可以咨询下英伟达官方授权的代理商-思腾合力,我想在这方面思腾合力会帮助到你的。

图像分割的引言

数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。

首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。

其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。1998年以来,人工神经网络识别技术已经引起了广泛的关注,并且应用于图像分割。

基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。这种方法需要大量的训练数据。

神经网络存在巨量的连接,容易引入空间信息,能较好地解决图像中的噪声和不均匀问题。选择何种网络结构是这种方法要解决的主要问题。图像分割是图像识别和计算机视觉至关重要的预处理。

没有正确的分割就不可能有正确的识别。但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。

例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。因此图像分割是需要进一步研究的技术。

人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法,但是这又增加了解决问题的复杂性。

在通信领域中,图像分割技术对可视电话等活动图像的传输很重要,需要把图像中活动部分与静止的背景分开,还要把活动部分中位移量不同的区域分开,对不同运动量的区域用不同的编码传输,以降低传输所需的码率。

如何在matlab中设计一个卷积神经网络实现图像分割

 

你可能感兴趣的:(神经网络,cnn,算法)