有些情况下,所要完成的工作可以分解并独立地分布到多个工作进程,对于这种简单的情况,可以用Pool类来管理固定数目的工作进程。作业的返回值会收集并作为一个列表返回。(以下程序cpu数量为2,相关函数解释见python 进程池2 - Pool相关函数)。
1 import multiprocessing 2 3 def do_calculation(data): 4 return data*2 5 def start_process(): 6 print 'Starting',multiprocessing.current_process().name 7 8 if __name__=='__main__': 9 inputs=list(range(10)) 10 print 'Inputs :',inputs 11 12 builtin_output=map(do_calculation,inputs) 13 print 'Build-In :', builtin_output 14 15 pool_size=multiprocessing.cpu_count()*2 16 pool=multiprocessing.Pool(processes=pool_size, 17 initializer=start_process,) 18 19 pool_outputs=pool.map(do_calculation,inputs) 20 pool.close() 21 pool.join() 22 23 print 'Pool :',pool_outputs
运行结果:
1 Inputs : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 2 Build-In : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 3 Starting PoolWorker-2 4 Starting PoolWorker-1 5 Starting PoolWorker-3 6 Starting PoolWorker-4 7 Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
默认情况下,Pool会创建固定数目的工作进程,并向这些工作进程传递作业,直到再没有更多作业为止。maxtasksperchild参数为每个进程执行task的最大数目,设置maxtasksperchild参数可以告诉池在完成一定数量任务之后重新启动一个工作进程,来避免运行时间很长的工作进程消耗太多的系统资源。
maxtasksperchild is the number of tasks a worker process can complete before it will exit and be replaced with a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild is None, which means worker processes will live as long as the pool.
Worker processes within a Pool typically live for the complete duration of the Pool’s work queue. A frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources held by workers is to allow a worker within a pool to complete only a set amount of work before being exiting, being cleaned up and a new process spawned to replace the old one. The maxtasksperchild argument to the Pool exposes this ability to the end user.
notice:
python 2.6.6
multiprocessing.Pool没有maxtaskperchild参数,Pool(processes=None, initializer=None, initargs=())
python 2.7.3
Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None)
1 import multiprocessing 2 3 def do_calculation(data): 4 return data*2 5 def start_process(): 6 print 'Starting',multiprocessing.current_process().name 7 8 if __name__=='__main__': 9 inputs=list(range(10)) 10 print 'Inputs :',inputs 11 12 builtin_output=map(do_calculation,inputs) 13 print 'Build-In :', builtin_output 14 15 pool_size=multiprocessing.cpu_count()*2 16 pool=multiprocessing.Pool(processes=pool_size, 17 initializer=start_process,maxtasksperchild=2) 18 19 pool_outputs=pool.map(do_calculation,inputs) 20 pool.close() 21 pool.join() 22 23 print 'Pool :',pool_outputs
运行结果:
1 Inputs : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 2 Build-In : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 3 Starting PoolWorker-1 4 Starting PoolWorker-2 5 Starting PoolWorker-3 6 Starting PoolWorker-4 7 Starting PoolWorker-5 8 Starting PoolWorker-6 9 Starting PoolWorker-7 10 Starting PoolWorker-8 11 Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
池完成其所分配的任务时,即使没有更多的工作要做,也会重新启动工作进程。从这个输出可以看到,尽管只有10个任务,而且每个工作进程一次可以完成两个任务,但是这里创建了8个工作进程。
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果。
1 import multiprocessing 2 import time 3 4 def func(msg): 5 for i in xrange(3): 6 print msg 7 time.sleep(1) 8 return "done " + msg 9 10 if __name__ == "__main__": 11 pool = multiprocessing.Pool(processes=4) 12 result = [] 13 for i in xrange(10): 14 msg = "hello %d" %(i) 15 result.append(pool.apply_async(func, (msg, ))) 16 pool.close() 17 pool.join() 18 for res in result: 19 print res.get() 20 print "Sub-process(es) done."
参考:
《Python 标准库》 10.4.17 进程池(p445)
http://www.coder4.com/archives/3352
原文:http://www.cnblogs.com/congbo/archive/2012/08/23/2652433.html