隐函数求导例题及解析

隐函数求导

两边同时对x求导

y = y ( x ) y=y(x) y=y(x)是由方程 e x − e y + 1 = cos ⁡ ( x y ) e^x-e^y+1=\cos(xy) exey+1=cos(xy)所确定的函数,求 d y d x \dfrac{dy}{dx} dxdy.

解:
\qquad 两边同时求导得:
e x − e y y ′ = − sin ⁡ ( x y ) × ( y + x y ′ ) \qquad e^x-e^yy'=-\sin(xy)\times(y+xy') exeyy=sin(xy)×(y+xy)

( x sin ⁡ ( x y ) − e y ) y ′ = − y sin ⁡ ( x y ) − e x \qquad (x\sin(xy)-e^y)y'=-y\sin(xy)-e^x (xsin(xy)ey)y=ysin(xy)ex

y ′ = e x + y sin ⁡ ( x y ) e y − x sin ⁡ ( x y ) \qquad y'=\dfrac{e^x+y\sin(xy)}{e^y-x\sin(xy)} y=eyxsin(xy)ex+ysin(xy)

\qquad 所以 d y d x = y ′ = e x + y sin ⁡ ( x y ) e y − x sin ⁡ ( x y ) \dfrac{dy}{dx}=y'=\dfrac{e^x+y\sin(xy)}{e^y-x\sin(xy)} dxdy=y=eyxsin(xy)ex+ysin(xy)


两边取ln再求导

y = ( 1 + x 2 ) ( 1 + 2 x ) ( 1 + x ) 3 ( 1 − 2 x ) y=\sqrt{\dfrac{(1+x^2)(1+2x)}{(1+x)^3(1-2x)}} y=(1+x)3(12x)(1+x2)(1+2x) ,求 y ′ y' y

解:
ln ⁡ y = ln ⁡ ( 1 + x 2 ) ( 1 + 2 x ) ( 1 + x ) 3 ( 1 − 2 x ) \qquad\ln y=\ln \sqrt{\dfrac{(1+x^2)(1+2x)}{(1+x)^3(1-2x)}} lny=ln(1+x)3(12x)(1+x2)(1+2x)

= 1 2 ln ⁡ ( 1 + x 2 ) + 1 2 ln ⁡ ∣ 1 + 2 x ∣ − 3 2 ln ⁡ ∣ 1 + x ∣ − 1 2 ln ⁡ ∣ 1 − 2 x ∣ \qquad\qquad=\dfrac 12\ln(1+x^2)+\dfrac 12\ln|1+2x|-\dfrac 32\ln|1+x|-\dfrac 12\ln|1-2x| =21ln(1+x2)+21ln1+2x23ln1+x21ln12x

\qquad 两边同时求导得:

y ′ y = x 1 + x 2 + 1 1 + 2 x − 3 2 ( 1 + x ) + 1 1 − 2 x \qquad \dfrac{y'}{y}=\dfrac{x}{1+x^2}+\dfrac{1}{1+2x}-\dfrac{3}{2(1+x)}+\dfrac{1}{1-2x} yy=1+x2x+1+2x12(1+x)3+12x1

y ′ = ( 1 + x 2 ) ( 1 + 2 x ) ( 1 + x ) 3 ( 1 − 2 x ) [ x 1 + x 2 + 1 1 + 2 x − 3 2 ( 1 + x ) + 1 1 − 2 x ] \qquad y'=\sqrt{\dfrac{(1+x^2)(1+2x)}{(1+x)^3(1-2x)}}[\dfrac{x}{1+x^2}+\dfrac{1}{1+2x}-\dfrac{3}{2(1+x)}+\dfrac{1}{1-2x}] y=(1+x)3(12x)(1+x2)(1+2x) [1+x2x+1+2x12(1+x)3+12x1]

你可能感兴趣的:(数学,数学)