一组图搞明白最短路径问题&Dijkstra算法

参考:
https://www.youtube.com/watch?v=ypE6a1Kk-6Q&list=PLe68gYG2zUeVNPEr9XPqeejGHihtQD6tl&index=31&t=0s
https://leetcode.com/discuss/general-discussion/655708/graph-for-beginners-problems-pattern-sample-solutions/562734

1. 问题分类

  • 单源最短路径问题:从某固定源点出发,求其到所有其他顶点的最短路径
  • 多源最短路径问题:求任意两顶点间的最短路径。

2. 无权图的单源最短路算法

  • 按照递增(非递减)的顺序找出到各个顶点的最短路
    顶点是一个一个的收罗进来的,顺序是从v3开始,其实就是BFS


dist[W] = S到W的最短距离;
dist[S] = 0;
path[W] = S到W的路上经过的某顶点;
void Unweighted(Vertex S)
{
    Enqueue(S, Q);
    while(!IsEmpty(Q)){
        V = Dequeue(Q);
        for(V 的每个邻接点 W){
            if(dist[W] == -1){
                dist[W] = dist[V] +1; // W的最短路径是V的最短路径+1
                path[W] = V; 
                Enqueue(W, Q);
            }
        }
    }
}

3. 有权图的单源最短路算法(Dijkstra算法)

不考虑负值圈问题


Dijkstra算法流程:

void Dijkstra(Vertex s){
    while(1){
        V = 未收录顶点中dist最小者;
        if(这样的V不存在)
            break;
        collected[V] = true;
        for(V 的每个邻接点 W){
            if(collectd[W] == false){
                // 如果W的现在最短距离小于上一节点V+VW之间的距离,那么W的最短距离就被更新!
                if(dist[V] + E < dist[W]){
                    dist[W] = dist[V] + E;
                    path[W] = V;
                }
            }
        }
    }
}

动图演示:


原点的dist为0,并且与原点相连的节点的dist为权值。



选择V2,V2指向V4(但是V4已经访问了),剩下的是V5(保持V5原来的路径不变)



从V3到V6的距离小于之前的V4到V6的距离




从V7到V6是更短的路径,所以V6的最短距离

4. leetcode 743. Network Delay Time

https://leetcode.com/problems/network-delay-time/

使用优先队列来存储pair (dist[V], V),按照距离来升序;

class Solution {
public:
    int networkDelayTime(vector>& times, int N, int K) {
        vector> > graph(N+1);
        for(int i=0; i p(times[i][1], times[i][2]);
            int idx = times[i][0];
            graph[idx].push_back(p);
        }
        
        vector dist(N+1, INT_MAX);
        dist[K] = 0;
        priority_queue, vector>, greater> > pq;
        
        pq.push(make_pair(0, K));
        
        while(!pq.empty()){
            pair p;
            p = pq.top();
            pq.pop();
            
            int u = p.second;
            for(auto it = graph[u].begin(); it != graph[u].end(); ++it){
                int v = it->first;
                int w = it->second;
                
                if(dist[v] > dist[u] + w){
                    dist[v] = dist[u] + w;
                    pq.push(make_pair(dist[v], v));
                }
            }
        }
        
        int res = 0;
        
        for(int i=1; i

5. Leetcode 1631. Path With Minimum Effort

https://leetcode.com/problems/path-with-minimum-effort/
关键在于diff,将diff和对应的坐标放入到优先队列中,按照diff升序排列,每次pop出diff最小的坐标,再遍历上下左右位置,将effort输入。

class Solution {
public:
    typedef pair > PIP;
    int dx[4] = {1, -1, 0, 0};
    int dy[4] = {0, 0, 1, -1};
    
    int minimumEffortPath(vector>& heights) {
        int rows = heights.size(), cols = heights[0].size();
        vector> visited(rows, vector(cols, 0));
        visited[0][0] = 1;
        
        priority_queue, greater> pq;
        pq.push(make_pair(0, make_pair(0,0)));
        
        int diff = 0;
        
        while(!pq.empty()){
            PIP h = pq.top();
            pq.pop();
            
            int x = h.second.first;
            int y = h.second.second;
            visited[x][y] = 1;
            diff = max(diff, h.first);
            cout << x << " " << y << " " << diff << endl; 
            if(x == rows-1 && y == cols-1)
                return diff;
            
            for(int i=0; i<4; ++i){
                int nx = x + dx[i];
                int ny = y + dy[i];
                if(nx >= 0 && nx < rows && ny >= 0 && ny < cols && visited[nx][ny] != 1) {
                        pq.push(make_pair(abs(heights[nx][ny] - heights[x][y]), make_pair(nx, ny)));
                }
            }
        }
        return 0;
    }
        
};

你可能感兴趣的:(一组图搞明白最短路径问题&Dijkstra算法)