python randomforest_随机森林random forest及python实现

引言

想通过随机森林来获取数据的主要特征

1、理论

根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法;

前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random

Forest)

随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。

简单来说,随机森林就是对决策树的集成,但有两点不同:

(2)特征选取的差异性:每个决策树的n个分类特征是在所有特征中随机选择的(n是一个需要我们自己调整的参数)

随机森林,简单理解,

比如预测salary,就是构建多个决策树job,age,house,然后根据要预测的量的各个特征(teacher,39,suburb)分别在对应决策树的目标值概率(salary<5000,salary>=5000),从而,确定预测量的发生概率(如,预测出P(salary<5000)=0.3).

参数说明:

最主要的两个参数是n_estimators和max_features。

n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。

max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:

max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。

同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

2、随机森林python实现

2.1随机森林回归器的使用Demo1

实现随机森林基本功能

#随机森林

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

import numpy as np

from sklearn.datasets import load_iris

iris=load_iris()

#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica

print(iris['target'].shape)

rf=RandomForestRegressor()#这里使用了默认的参数设置

rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练

#

#随机挑选两个预测不相同的样本

instance=iris.data[[100,109]]

print(instance)

rf.predict(instance[[0]])

print('instance 0 prediction;',rf.predict(instance[[0]]))

print( 'instance 1 prediction;',rf.predict(instance[[1]]))

print(iris.target[100],iris.target[109])

运行结果

(150,)

[[ 6.3 3.3 6. 2.5]

[ 7.2 3.6 6.1 2.5]]

instance 0 prediction; [ 2.]

instance 1 prediction; [ 2.]

2 2

2.2 随机森林分类器、决策树、extra树分类器的比较Demo2

3种方法的比较

#random forest test

from sklearn.model_selection import cross_val_score

from sklearn.datasets import make_blobs

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.tree import DecisionTreeClassifier

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)

scores = cross_val_score(clf, X, y)

print(scores.mean())

clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)

scores = cross_val_score(clf, X, y)

print(scores.mean())

clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)

scores = cross_val_score(clf, X, y)

print(scores.mean())

运行结果:

0.979408793821

0.999607843137

0.999898989899

1

2

3

2.3 随机森林回归器regressor-实现特征选择

#随机森林2

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

import numpy as np

from sklearn.datasets import load_iris

iris=load_iris()

from sklearn.model_selection import cross_val_score, ShuffleSplit

X = iris["data"]

Y = iris["target"]

names = iris["feature_names"]

rf = RandomForestRegressor()

scores = []

for i in range(X.shape[1]):

score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",

cv=ShuffleSplit(len(X), 3, .3))

scores.append((round(np.mean(score), 3), names[i]))

print(sorted(scores, reverse=True))

运行结果:

[(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length

(cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]

1

2

2.4 demo4-随机森林

本来想利用以下代码来构建随机随机森林决策树,但是,遇到的问题是,程序一直在运行,无法响应,还需要调试。

#随机森林4

#coding:utf-8

import csv

from random import seed

from random import randrange

from math import sqrt

def loadCSV(filename):#加载数据,一行行的存入列表

dataSet = []

with open(filename, 'r') as file:

csvReader = csv.reader(file)

for line in csvReader:

dataSet.append(line)

return dataSet

# 除了标签列,其他列都转换为float类型

def column_to_float(dataSet):

featLen = len(dataSet[0]) - 1

for data in dataSet:

for column in range(featLen):

data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集

def spiltDataSet(dataSet, n_folds):

fold_size = int(len(dataSet) / n_folds)

dataSet_copy = list(dataSet)

dataSet_spilt = []

for i in range(n_folds):

fold = []

while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立

index = randrange(len(dataSet_copy))

fold.append(dataSet_copy.pop(index)) # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。

dataSet_spilt.append(fold)

return dataSet_spilt

# 构造数据子集

def get_subsample(dataSet, ratio):

subdataSet = []

lenSubdata = round(len(dataSet) * ratio)#返回浮点数

while len(subdataSet) < lenSubdata:

index = randrange(len(dataSet) - 1)

subdataSet.append(dataSet[index])

# print len(subdataSet)

return subdataSet

# 分割数据集

def data_spilt(dataSet, index, value):

left = []

right = []

for row in dataSet:

if row[index] < value:

left.append(row)

else:

right.append(row)

return left, right

# 计算分割代价

def spilt_loss(left, right, class_values):

loss = 0.0

for class_value in class_values:

left_size = len(left)

if left_size != 0: # 防止除数为零

prop = [row[-1] for row in left].count(class_value) / float(left_size)

loss += (prop * (1.0 - prop))

right_size = len(right)

if right_size != 0:

prop = [row[-1] for row in right].count(class_value) / float(right_size)

loss += (prop * (1.0 - prop))

return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征

def get_best_spilt(dataSet, n_features):

features = []

class_values = list(set(row[-1] for row in dataSet))

b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None

while len(features) < n_features:

index = randrange(len(dataSet[0]) - 1)

if index not in features:

features.append(index)

# print 'features:',features

for index in features:#找到列的最适合做节点的索引,(损失最小)

for row in dataSet:

left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支

loss = spilt_loss(left, right, class_values)

if loss < b_loss:#寻找最小分割代价

b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right

# print b_loss

# print type(b_index)

return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签

def decide_label(data):

output = [row[-1] for row in data]

return max(set(output), key=output.count)

# 子分割,不断地构建叶节点的过程对对对

def sub_spilt(root, n_features, max_depth, min_size, depth):

left = root['left']

# print left

right = root['right']

del (root['left'])

del (root['right'])

# print depth

if not left or not right:

root['left'] = root['right'] = decide_label(left + right)

# print 'testing'

return

if depth > max_depth:

root['left'] = decide_label(left)

root['right'] = decide_label(right)

return

if len(left) < min_size:

root['left'] = decide_label(left)

else:

root['left'] = get_best_spilt(left, n_features)

# print 'testing_left'

sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)

if len(right) < min_size:

root['right'] = decide_label(right)

else:

root['right'] = get_best_spilt(right, n_features)

# print 'testing_right'

sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

# 构造决策树

def build_tree(dataSet, n_features, max_depth, min_size):

root = get_best_spilt(dataSet, n_features)

sub_spilt(root, n_features, max_depth, min_size, 1)

return root

# 预测测试集结果

def predict(tree, row):

predictions = []

if row[tree['index']] < tree['value']:

if isinstance(tree['left'], dict):

return predict(tree['left'], row)

else:

return tree['left']

else:

if isinstance(tree['right'], dict):

return predict(tree['right'], row)

else:

return tree['right']

# predictions=set(predictions)

def bagging_predict(trees, row):

predictions = [predict(tree, row) for tree in trees]

return max(set(predictions), key=predictions.count)

# 创建随机森林

def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):

trees = []

for i in range(n_trees):

train = get_subsample(train, ratio)#从切割的数据集中选取子集

tree = build_tree(train, n_features, max_depth, min_size)

# print 'tree %d: '%i,tree

trees.append(tree)

# predict_values = [predict(trees,row) for row in test]

predict_values = [bagging_predict(trees, row) for row in test]

return predict_values

# 计算准确率

def accuracy(predict_values, actual):

correct = 0

for i in range(len(actual)):

if actual[i] == predict_values[i]:

correct += 1

return correct / float(len(actual))

if __name__ == '__main__':

seed(1)

dataSet = loadCSV(r'G:\0研究生\tianchiCompetition\训练小样本2.csv')

column_to_float(dataSet)

n_folds = 5

max_depth = 15

min_size = 1

ratio = 1.0

# n_features=sqrt(len(dataSet)-1)

n_features = 15

n_trees = 10

folds = spiltDataSet(dataSet, n_folds)#先是切割数据集

scores = []

for fold in folds:

train_set = folds[

:] # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)

train_set.remove(fold)#选好训练集

# print len(folds)

train_set = sum(train_set, []) # 将多个fold列表组合成一个train_set列表

# print len(train_set)

test_set = []

for row in fold:

row_copy = list(row)

row_copy[-1] = None

test_set.append(row_copy)

# for row in test_set:

# print row[-1]

actual = [row[-1] for row in fold]

predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)

accur = accuracy(predict_values, actual)

scores.append(accur)

print ('Trees is %d' % n_trees)

print ('scores:%s' % scores)

print ('mean score:%s' % (sum(scores) / float(len(scores))))

2.5 随机森林分类sonic data

# CART on the Bank Note dataset

from random import seed

from random import randrange

from csv import reader

# Load a CSV file

def load_csv(filename):

file = open(filename, "r")

lines = reader(file)

dataset = list(lines)

return dataset

# Convert string column to float

def str_column_to_float(dataset, column):

for row in dataset:

row[column] = float(row[column].strip())

# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

dataset_split = list()

dataset_copy = list(dataset)

fold_size = int(len(dataset) / n_folds)

for i in range(n_folds):

fold = list()

while len(fold) < fold_size:

index = randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index))

dataset_split.append(fold)

return dataset_split

# Calculate accuracy percentage

def accuracy_metric(actual, predicted):

correct = 0

for i in range(len(actual)):

if actual[i] == predicted[i]:

correct += 1

return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

folds = cross_validation_split(dataset, n_folds)

scores = list()

for fold in folds:

train_set = list(folds)

train_set.remove(fold)

train_set = sum(train_set, [])

test_set = list()

for row in fold:

row_copy = list(row)

test_set.append(row_copy)

row_copy[-1] = None

predicted = algorithm(train_set, test_set, *args)

actual = [row[-1] for row in fold]

accuracy = accuracy_metric(actual, predicted)

scores.append(accuracy)

return scores

# Split a data set based on an attribute and an attribute value

def test_split(index, value, dataset):

left, right = list(), list()

for row in dataset:

if row[index] < value:

left.append(row)

else:

right.append(row)

return left, right

# Calculate the Gini index for a split dataset

def gini_index(groups, class_values):

gini = 0.0

for class_value in class_values:

for group in groups:

size = len(group)

if size == 0:

continue

proportion = [row[-1] for row in group].count(class_value) / float(size)

gini += (proportion * (1.0 - proportion))

return gini

# Select the best split point for a dataset

def get_split(dataset):

class_values = list(set(row[-1] for row in dataset))

b_index, b_value, b_score, b_groups = 999, 999, 999, None

for index in range(len(dataset[0])-1):

for row in dataset:

groups = test_split(index, row[index], dataset)

gini = gini_index(groups, class_values)

if gini < b_score:

b_index, b_value, b_score, b_groups = index, row[index], gini, groups

print ({'index':b_index, 'value':b_value})

return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value

def to_terminal(group):

outcomes = [row[-1] for row in group]

return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal

def split(node, max_depth, min_size, depth):

left, right = node['groups']

del(node['groups'])

# check for a no split

if not left or not right:

node['left'] = node['right'] = to_terminal(left + right)

return

# check for max depth

if depth >= max_depth:

node['left'], node['right'] = to_terminal(left), to_terminal(right)

return

# process left child

if len(left) <= min_size:

node['left'] = to_terminal(left)

else:

node['left'] = get_split(left)

split(node['left'], max_depth, min_size, depth+1)

# process right child

if len(right) <= min_size:

node['right'] = to_terminal(right)

else:

node['right'] = get_split(right)

split(node['right'], max_depth, min_size, depth+1)

# Build a decision tree

def build_tree(train, max_depth, min_size):

root = get_split(train)

split(root, max_depth, min_size, 1)

return root

# Make a prediction with a decision tree

def predict(node, row):

if row[node['index']] < node['value']:

if isinstance(node['left'], dict):

return predict(node['left'], row)

else:

return node['left']

else:

if isinstance(node['right'], dict):

return predict(node['right'], row)

else:

return node['right']

# Classification and Regression Tree Algorithm

def decision_tree(train, test, max_depth, min_size):

tree = build_tree(train, max_depth, min_size)

predictions = list()

for row in test:

prediction = predict(tree, row)

predictions.append(prediction)

return(predictions)

# Test CART on Bank Note dataset

seed(1)

# load and prepare data

filename = r'G:\0pythonstudy\决策树\sonar.all-data.csv'

dataset = load_csv(filename)

# convert string attributes to integers

for i in range(len(dataset[0])-1):

str_column_to_float(dataset, i)

# evaluate algorithm

n_folds = 5

max_depth = 5

min_size = 10

scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

运行结果:

{'index': 38, 'value': 0.0894}

{'index': 36, 'value': 0.8459}

{'index': 50, 'value': 0.0024}

{'index': 15, 'value': 0.0906}

{'index': 16, 'value': 0.9819}

{'index': 10, 'value': 0.0785}

{'index': 16, 'value': 0.0886}

{'index': 38, 'value': 0.0621}

{'index': 5, 'value': 0.0226}

{'index': 8, 'value': 0.0368}

{'index': 11, 'value': 0.0754}

{'index': 0, 'value': 0.0239}

{'index': 8, 'value': 0.0368}

{'index': 29, 'value': 0.1671}

{'index': 46, 'value': 0.0237}

{'index': 38, 'value': 0.0621}

{'index': 14, 'value': 0.0668}

{'index': 4, 'value': 0.0167}

{'index': 37, 'value': 0.0836}

{'index': 12, 'value': 0.0616}

{'index': 7, 'value': 0.0333}

{'index': 33, 'value': 0.8741}

{'index': 16, 'value': 0.0886}

{'index': 8, 'value': 0.0368}

{'index': 33, 'value': 0.0798}

{'index': 44, 'value': 0.0298}

Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951

2195, 39.02439024390244]

Mean Accuracy: 53.659%

请按任意键继续. . .

知识点:

1.load CSV file

from csv import reader

# Load a CSV file

def load_csv(filename):

file = open(filename, "r")

lines = reader(file)

dataset = list(lines)

return dataset

filename = r'G:\0pythonstudy\决策树\sonar.all-data.csv'

dataset=load_csv(filename)

print(dataset)

2.把数据转化成float格式

# Convert string column to float

def str_column_to_float(dataset, column):

for row in dataset:

row[column] = float(row[column].strip())

# print(row[column])

# convert string attributes to integers

for i in range(len(dataset[0])-1):

str_column_to_float(dataset, i)

3.把最后一列的分类字符串转化成0、1整数

def str_column_to_int(dataset, column):

class_values = [row[column] for row in dataset]#生成一个class label的list

# print(class_values)

unique = set(class_values)#set 获得list的不同元素

print(unique)

lookup = dict()#定义一个字典

# print(enumerate(unique))

for i, value in enumerate(unique):

lookup[value] = i

# print(lookup)

for row in dataset:

row[column] = lookup[row[column]]

print(lookup['M'])

4、把数据集分割成K份

# Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

dataset_split = list()#生成空列表

dataset_copy = list(dataset)

print(len(dataset_copy))

print(len(dataset))

#print(dataset_copy)

fold_size = int(len(dataset) / n_folds)

for i in range(n_folds):

fold = list()

while len(fold) < fold_size:

index = randrange(len(dataset_copy))

# print(index)

fold.append(dataset_copy.pop(index))#使用.pop()把里边的元素都删除(相当于转移),这k份元素各不相同。

dataset_split.append(fold)

return dataset_split

n_folds=5

folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的训练集

5.计算正确率

# Calculate accuracy percentage

def accuracy_metric(actual, predicted):

correct = 0

for i in range(len(actual)):

if actual[i] == predicted[i]:

correct += 1

return correct / float(len(actual)) * 100.0#这个是二值分类正确性的表达式

6.二分类每列

# Split a data set based on an attribute and an attribute value

def test_split(index, value, dataset):

left, right = list(), list()#初始化两个空列表

for row in dataset:

if row[index] < value:

left.append(row)

else:

right.append(row)

return left, right #返回两个列表,每个列表以value为界限对指定行(index)进行二分类。

7.使用gini系数来获得最佳分割点

# Calculate the Gini index for a split dataset

def gini_index(groups, class_values):

gini = 0.0

for class_value in class_values:

for group in groups:

size = len(group)

if size == 0:

continue

proportion = [row[-1] for row in group].count(class_value) / float(size)

gini += (proportion * (1.0 - proportion))

return gini

# Select the best split point for a dataset

def get_split(dataset):

class_values = list(set(row[-1] for row in dataset))

b_index, b_value, b_score, b_groups = 999, 999, 999, None

for index in range(len(dataset[0])-1):

for row in dataset:

groups = test_split(index, row[index], dataset)

gini = gini_index(groups, class_values)

if gini < b_score:

b_index, b_value, b_score, b_groups = index, row[index], gini, groups

# print(groups)

print ({'index':b_index, 'value':b_value,'score':gini})

return {'index':b_index, 'value':b_value, 'groups':b_groups}

这段代码,在求gini指数,直接应用定义式,不难理解。获得最佳分割点可能比较难看懂,这里用了两层迭代,一层是对不同列的迭代,一层是对不同行的迭代。并且,每次迭代,都对gini系数进行更新。

8、决策树生成

# Create child splits for a node or make terminal

def split(node, max_depth, min_size, depth):

left, right = node['groups']

del(node['groups'])

# check for a no split

if not left or not right:

node['left'] = node['right'] = to_terminal(left + right)

return

# check for max depth

if depth >= max_depth:

node['left'], node['right'] = to_terminal(left), to_terminal(right)

return

# process left child

if len(left) <= min_size:

node['left'] = to_terminal(left)

else:

node['left'] = get_split(left)

split(node['left'], max_depth, min_size, depth+1)

# process right child

if len(right) <= min_size:

node['right'] = to_terminal(right)

else:

node['right'] = get_split(right)

split(node['right'], max_depth, min_size, depth+1)

这里使用了递归编程,不断生成左叉树和右叉树。

9.构建决策树

# Build a decision tree

def build_tree(train, max_depth, min_size):

root = get_split(train)

split(root, max_depth, min_size, 1)

return root

tree=build_tree(train_set, max_depth, min_size)

print(tree)

10、预测test集

# Build a decision tree

def build_tree(train, max_depth, min_size):

root = get_split(train)#获得最好的分割点,下标值,groups

split(root, max_depth, min_size, 1)

return root

# tree=build_tree(train_set, max_depth, min_size)

# print(tree)

# Make a prediction with a decision tree

def predict(node, row):

print(row[node['index']])

print(node['value'])

if row[node['index']] < node['value']:#用测试集来代入训练的最好分割点,分割点有偏差时,通过搜索左右叉树来进一步比较。

if isinstance(node['left'], dict):#如果是字典类型,执行操作

return predict(node['left'], row)

else:

return node['left']

else:

if isinstance(node['right'], dict):

return predict(node['right'], row)

else:

return node['right']

tree = build_tree(train_set, max_depth, min_size)

predictions = list()

for row in test_set:

prediction = predict(tree, row)

predictions.append(prediction)

11.评价决策树

# Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

folds = cross_validation_split(dataset, n_folds)

scores = list()

for fold in folds:

train_set = list(folds)

train_set.remove(fold)

train_set = sum(train_set, [])

test_set = list()

for row in fold:

row_copy = list(row)

test_set.append(row_copy)

row_copy[-1] = None

predicted = algorithm(train_set, test_set, *args)

actual = [row[-1] for row in fold]

accuracy = accuracy_metric(actual, predicted)

scores.append(accuracy)

return scores

参考:

随机森林;

python实现随机森林;

sklearn随机森林实现;

tuning random forest’s parameters;

随机森林python;

随机森林声纳数据仿真;

GitHub决策树;

kaggle random forest

你可能感兴趣的:(python,randomforest)