CompletableFuture快速指南

CompletableFuture抛弃了JDK7及以前的基于线程池的异步任务,而是CompletableFuture.runAsync这样的静态工厂方法来返回一个CompletableFuture对象。它既支持JDK7的Future/Callback模型,也支持新的异步任务执行回调和合并操作。在JDK8以前,也有一些框架实现了这种类型的Future。比如,guava的ListenableFuture和Netty的ComputeFuture和ComputeFutureListener。

值得注意的是,CompletableFuture也不再使用Callable作为可返回的任务接口,而是使用Supplier接口。
下面是一个有返回值的示例,调用get方法会被阻塞,直到Run方法执行完毕:

public class TestFuture {

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println(Thread.currentThread().getName());
        CompletableFuture cf1 = CompletableFuture.runAsync(new  Runnable() {          
            @Override
            public void run() {
                try {
                    System.out.println(Thread.currentThread().getName());
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                
                    e.printStackTrace();
                }
            }
            
        });
        cf1.get();
        System.out.println("执行完毕");
    }
}

输出:

main
ForkJoinPool.commonPool-worker-1
执行完毕

CompletableFuture使用的默认的线程池在任务执行完成以后所有的线程退出。

CompletableFuture也可以指定线程池对象:

public class TestFuture {

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println(Thread.currentThread().getName());
        Supplier task = new Supplier() {
            @Override
            public String get() {
                try {
                    System.out.println(Thread.currentThread().getName());
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                return "hello";
            }
        };
        CompletableFuture cf = CompletableFuture.supplyAsync(task, Executors.newFixedThreadPool(10));
        System.out.println(cf.get());
        System.out.println("执行完毕");
    }
}

输出:

main
pool-1-thread-1
hello
执行完毕

但是要注意的是,使用默认的线程池,工作线程在任务执行完毕以后不会退出。

你可能会好奇,每次都执行一个任务,那如果要执行10次任务怎么办?下面是一个例子:

public class TestFuture3 {

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println(Thread.currentThread().getName());
        ExecutorService threadPool = Executors.newFixedThreadPool(10);
        Supplier task = new Supplier() {
            @Override
            public String get() {
                try {
                    System.out.println(Thread.currentThread().getName());
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                return "hello";
            }
        };
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println(CompletableFuture.supplyAsync(task, threadPool).get());
        System.out.println("执行完毕");
    }
}

当然这会存在一个问题,就是所有都是串行执行的。

为什么非要得到结果?

使用Future得到结果的原因是因为要拿到这个结果进行下一个步骤的处理。但是如果能够在处理完成以后就能立即回调一个方法,或者几个并行的处理能够合并在一起。结果只在最后一个获取,是不是好很多。

假设有这样一个需求:

有一批订单号,需要查询这批订单的详情,评论,订单所对应商品的图片,然后合并成一个对象返回到客户端。

功能异乎寻常的强大,简直是吊打原有的Future/Callable模型。再配合流操作,简直要逆天,非常值得学习。


public class TestFuture {

    public static void main(String[] args) throws InterruptedException, ExecutionException {

        CompletableFuture cf1 = CompletableFuture.runAsync(new Runnable() {

            @Override
            public void run() {

                try {
                    Thread.sleep(2000);
                    System.out.println("hello CompletableFuture! ");
                } catch (InterruptedException e) {

                    e.printStackTrace();
                }

            }
        }, Executors.newSingleThreadScheduledExecutor());

        cf1.thenRun(new Runnable() {
            @Override
            public void run() {
                System.out.println("异步执行完了,就执行这里!");

            }
        });
        System.out.println("主线程执行完毕");

        CompletableFuture result = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "async CompletableFuture! ";

        }, Executors.newSingleThreadScheduledExecutor());

        result.thenAccept((str) -> {
            System.out.println("thenAccept");
            System.out.println(str);
        });

        System.out.println("主线程执行完毕");
    }

}

public class TestFuture3 {

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println(Thread.currentThread().getName());
        ExecutorService threadPool = Executors.newFixedThreadPool(10);
        Supplier> task = () -> {
            System.out.println(Thread.currentThread().getName());
            System.out.println("执行得到订单ID");
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            List list = new ArrayList<>();
            list.add("1");
            list.add("2");
            list.add("3");
            list.add("4");
            return list;

        };
        /**
         * Lambda方法的参数是apply方法的参数。不是类的参数
         */
        Function, List> getOrder = (orderIds) -> {
            System.out.println("开始执行得到订单,订单数:" + orderIds.size());
            List orders = new ArrayList<>();
            for (String string : orderIds) {
                try {
                    Thread.sleep(100);
                    Order order = new Order();
                    order.setOrderId(string);
                    orders.add(order);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

            }
            System.out.println("完成执行得到订单,订单数:" + orders.size());
            return orders;
        };
        CompletableFuture> cf = CompletableFuture.supplyAsync(task, threadPool);
        CompletableFuture> cf1 = cf.thenApplyAsync(getOrder);
        CompletableFuture> cf2 = cf.thenApplyAsync(orderIds -> {
            List comments = new ArrayList<>();
            System.out.println("执行输出订单,订单数:" + orderIds.size());
            for (String orderId : orderIds) {
                Comment comment = new Comment(orderId, "非常好");
                comments.add(comment);
            }
            return comments;
        });

        CompletableFuture> resultCF = cf.thenCombine(cf1, (orderIds, orders) -> {
            List details = new ArrayList<>();
            for (Order order : orders) {
                Detail detail = new Detail();
                detail.setOrder(order);
                detail.setOrderId(order.getOrderId());
                details.add(detail);
            }

            return details;
        }).thenCombine(cf2, (details, comments) -> {
            for (Detail detail : details) {

                for (Comment comment : comments) {
                    if (comment.getOrderId().equals(detail.getOrderId())) {
                        detail.setComment(comment);
                    }
                }

            }
            return details;

        });

        List result = resultCF.get();
        for (Detail detail : result) {
            System.out.println(detail);
        }
    }
}

CompletableFuture的一系列接口操作,是非常接近人类思维的。但是对于程序员来说,越是接近人类的思维,代码反而难以理解。或许是因为对其接口掌控越来越弱,程序员对难以掌控的实现就好像有一种天生的排斥。就好像很多程序员都喜欢C++一样,因为程序员可以掌控一切吧。

你可能感兴趣的:(CompletableFuture快速指南)