- 光学超表面的人工智能
Luis Li 的猫猫
人工智能专区基础及拓展超表面设计人工智能机器学习算法
光学超表面,即能够控制光传播的平面人工介质,正在从实验室过渡到商业应用。这种转变需要先进的超结构和超表面设计,考虑可制造性并通过后处理算法提高光学性能。人工智能,尤其是机器学习的优化,为这些需求提供了解决方案。该文章系统地回顾了AI在三个关键领域的潜在影响:AI支持的超表面可制造性设计(DFM)、超越经典局部相位近似的设计以及AI赋能的计算后端。Introduction超表面是超材料的二维(2D)
- 自然语言处理(NLP)领域大语言模型学习目录大全
彬彬侠
大模型自然语言处理NLP大模型LLMGPTBERTGLM
本文主要收集了自然语言处理(NLP)领域的大语言模型,可以可以通过点击标题链接查看具体的详情。GPT系列GPT-1(GenerativePre-trainedTransformer1)模型GPT-1(GenerativePre-trainedTransformer1)是OpenAI在2018年6月提出的第一代GPT模型,也是第一个基于Transformer结构的自回归(Autoregressive
- DeepSeek时代:AI如何重塑软件开发的每个阶段,效率提升全解析
阿三0404
人工智能
在软件开发领域,时间就是竞争力。传统的瀑布模型和敏捷开发流程中,需求偏差、重复编码、测试遗漏等问题不断消耗团队精力。随着以DeepSeek为代表的AI技术突破,从需求分析到运维监控的每个环节都在发生效率革命。本文将深入解析AI在开发全流程中的具体应用,并通过真实数据揭示其带来的效率跃升。一、需求分析阶段:从模糊需求到精准拆解(效率提升65%)AI工具:自然语言处理(NLP)、需求图谱生成应用场景:
- DeepSeek:如何通过自然语言生成HTML文件与原型图?
阿三0404
ai人工智能html机器学习深度学习
在当今快节奏的开发与设计环境中,快速生成HTML文件或原型图是每个开发者与设计师的迫切需求。虽然DeepSeek无法直接生成图片,但它却能够通过自然语言生成流程图、原型图以及交互式页面,甚至可以直接输出HTML代码。本文将详细介绍如何与DeepSeek高效交流,生成你想要的HTML文件或原型图,并分享一些实用技巧。1.DeepSeek的核心功能与优势DeepSeek是一款基于自然语言处理(NLP)
- 企业AI数据安全白皮书:深寻模型会话保护与安当TDE实战
安 当 加 密
人工智能
一、引言人工智能正在重塑企业的业务流程与创新模式,从智能客服到辅助决策,从图像识别到自然语言处理,AI模型正逐步渗透到企业运营的各个环节。然而,随着AI技术的深入应用,数据安全问题也如影随形。对于部署在企业内网的DeepSeek模型而言,员工与模型的会话内容往往包含企业的核心商业信息、敏感技术参数以及员工个人隐私等关键数据。一旦这些数据遭到泄露、篡改或恶意利用,不仅会给企业带来巨大的经济损失,还可
- DeepSeek这么火,一文教你本地部署DeepSeek!
入职啦
pythonpythondeepseek部署持续部署AI人工智能
要说年假最火的是什么,DeepSeek绝对在话题榜上,公众号几乎都是关于他的,今天入职啦也来和大家聊一聊我们AI领域的新星–DeepSeek,顺便也教大家部署一套属于自己的本地搜索服务。为什么DeepSeek这么火?一、技术架构优势DeepSeek采用创新的混合模型架构,将传统机器学习与深度学习有机结合。这种架构既保留了传统方法的可解释性,又具备深度学习的强大表征能力。通过自适应学习机制,Deep
- python程序员工资高吗?
lmseo5hy
python培训python程序员
据统计数据显示,北京Python平均薪资为18860元,Python不同岗位薪资范围为:Python全栈开发工程师(10k-20K)、Python运维开发工程师(15k-20K)、Python高级开发工程师(15k-30K)、Python大数据工程师(15K-30K)、Python机器学习工程师(15k-30K)、Python架构师(20k-40k)等,相比于Java、PHP、C#等其他的编程语言
- #深度优化提示词模板:解锁DeepSeek R1终极潜力的系统方案
领码科技
AI应用技能篇低代码提示词优化DeepSeekR1AI交互设计智能对话系统
摘要本文提出针对DeepSeekR1大模型的深度提示词优化体系,基于认知心理学原理与机器学习特征构建四维优化框架。通过解析模型工作机制、设计结构化模板、实战案例验证及进阶调优策略,形成覆盖基础到高阶的完整优化方案。研究显示优化后的提示词模板可使任务准确率提升40%,响应相关性提高55%。方案兼具理论深度与实践价值,为开发者提供可落地的优化指南。关键词:提示词优化、DeepSeekR1、AI交互设计
- 【Java】已解决java.lang.NoClassDefFoundError异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- Python爬取58同城广州房源+可视化分析
R3eE9y2OeFcU40
感谢关注天善智能,走好数据之路↑↑↑欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。消失了一段时间,这段时间在CSDN阅读了不少关于Python爬虫的文章,也学习了秦璐老师
- 深度学习中N维数组的介绍
帅维维
深度学习深度学习人工智能
N维数组是机器学习和神经网络的主要数据结构。下面是N维数组的实例:0维数组(标量):通常表示一个类别。1维数组(向量):通常表示一个特征向量。二维数组(矩阵):通常表示一个样本--特征矩阵。三维矩阵:通常表示RGB图片(宽*高*通道)。四维矩阵:通常表示一个RGB图片批量(批量大小*宽*高*通道)。五维矩阵:通常表示一个视频批量(批量大小*时间*宽*高*通道)。
- 智能交通违章处理系统:AI赋能下的智慧交通解决方案
Echo_Wish
Python笔记Python算法人工智能
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- Win7安装新版本anaconda出现Failed to extract packages解决方案
爱编程的喵喵
Python基础课程pythonanacondawin7failedtoextra
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Win7安装新版本anaconda出
- Deepseek接入微信生态
小赖同学啊
pythonpythondeepseekdeepseek接入微信生态
要将DeepSeek接入微信,通常是指将DeepSeek的AI能力(如自然语言处理、数据分析等)集成到微信平台中,以便通过微信公众号、小程序或企业微信提供服务。以下是实现这一目标的几种常见方式:1.通过微信公众号接入微信公众号(服务号或订阅号)可以通过开发模式接入DeepSeek的API,实现智能对话、内容推荐等功能。步骤:注册微信公众号:前往微信公众平台注册账号。选择服务号或订阅号(服务号功能更
- 机器学习在地图制图学中的应用
地图模型炼丹师
机器学习人工智能
原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstractCSDN/2025/Machinelearningincartography.pdfatmain·keykeywu2048/CSDN·GitHub核心内容本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机器学习(尤其是深度学习)在制
- 机器学习大纲总结
excellent121
机器学习人工智能
一、概念1.人工智能人工智能包含机器学习,机器学习包含深度学习2.机器学习机器学习是实现人工智能的一种途径机器学习=传统机器学习+深度学习3.深度学习深度学习是由机器学习的一种方法发展而来4.发展三要素数据、算法、算力5.发展史5.1符号主义(20世纪50-70):专家系统占主导1950年:图灵设计国际象棋程序1962年:IBMArthurSamuel的跳棋程序战胜人类高手(人工智能第一次浪潮)5
- 机器学习入门知识
十五境剑修
机器学习人工智能
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
- 人工智能与深度学习的应用案例:从技术原理到实践创新
accurater
人工智能深度学习科技
第一章引言人工智能(AI)作为21世纪最具变革性的技术之一,正通过深度学习(DeepLearning)等核心技术推动各行业的智能化进程。从计算机视觉到自然语言处理,从医疗诊断到工业制造,深度学习通过模拟人脑神经网络的层次化学习机制,实现了对复杂数据的高效分析与决策。本文结合前沿技术框架与行业应用案例,探讨深度学习的核心原理及其在多个领域的实践路径,并附代码实例以增强技术理解。第二章深度学习的技术基
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- svn 通过127.0.01能访问 但通过公网IP不能访问,这是什么原因?
行思理
运维Linuxsvnlinux防火墙
连接失败的提示如下1、SVN的启动方法方法一:svnserve-d-r/mnt/svn方法二:svnserve-d--listen-port3690-r/mnt/svn方法三:svnserve-d-r/mnt/svn--listen-host0.0.0.02、首先检查svn服务器是否启动方法一:netstat-tunlp|grepsvn演示如下如上状态,说明已启动方法二:svnserve--ver
- ResNet 改进:轻量级的混合本地信道注意机制MLCA
听风吹等浪起
AI改进系列深度学习opencv计算机视觉
目录1.MLCA注意力机制2.改进位置3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.MLCA注意力机制MLCA(MixedLocalChannelAttention)是一种轻量级的混合本地信道注意机制,旨在提升卷积神经网络(CNN)在图像处理任务中的性能。它通过结合局部和全局信息来增强特征表示能力,同时保持较低的计算复杂度。核心思想:MLCA的核心
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- 特征缩放:统一量纲,提高模型性能
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
特征缩放:统一量纲,提高模型性能1.背景介绍在机器学习和数据挖掘领域,我们经常会遇到不同特征之间量纲差异很大的情况。比如,一个数据集中可能包含年龄(0-100)、收入(0-100000)、身高(150-200cm)等不同尺度的特征。这种量纲不统一会给许多机器学习算法(如梯度下降)带来问题,导致收敛速度慢、模型性能差等。特征缩放(FeatureScaling)就是一种用于解决这个问题的常用数据预处理
- Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习算法链管道网格搜索
Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明目录Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明一、简单介绍二、算法链与管道1、算法链与管道的概念2、使用Pipeline的示例3、关键点说明三、用预处理进行参数选择四、构建管道五、在网格搜索中使用管道1、举例说
- Kubeflow学习
小高高不要bug
学习kubernetes大数据
Kubeflow学习介绍架构Kubeflow在ML工作流中的组件介绍Kubeflow致力于使在Kubernetes上部署机器学习工作流变得简单、可移植和可扩展。目标不是重新创建其他服务,而是提供一种直接的方式来将最佳的ML开源系统部署到不同的基础设施。在任何运行Kubenertes的地方,都应该能够运行Kubeflow。Kubeflow是Kubernetes的机器学习工具包。要使用Kubeflow
- 深度学习系列71:表格检测和识别
IE06
深度学习系列深度学习人工智能
1.pdf处理如果是可编辑的pdf格式,那么可以直接用pdfplumber进行处理:importpdfplumberimportpandasaspdwithpdfplumber.open("中新科技:2015年年度报告摘要.PDF")aspdf:page=pdf.pages[1]#第一页的信息text=page.extract_text()print(text)table=page.extract
- 【实战项目】Python 手撕一个基于最新端到端大模型的语音聊天系统
kakaZhui
解码前沿多模态大模型:认知分析和工业级实战python开发语言AIGC人工智能chatgpt
写在前面:为什么需要端到端语音交互近年来,随着深度学习技术的飞速发展,语音交互技术取得了显著的进步。从智能音箱到虚拟助手,语音交互已经渗透到我们生活的方方面面。然而,传统的语音交互系统往往采用“语音识别(ASR)-自然语言理解(NLU)-对话管理(DM)-自然语言生成(NLG)-语音合成(TTS)”的级联式架构,这种架构存在着诸多弊端,如:错误累积:每个模块的错误都会传递到下一个模块,导致最终结果
- 体育数据分析:竞技表现优化与商业价值挖掘的技术范式
Tina0898
数据分析数据挖掘
体育数据分析作为一门交叉学科,正在重塑现代体育产业的发展轨迹。通过多源数据采集、机器学习建模和商业智能分析,体育数据分析已经形成了完整的技术体系和应用生态。本文将深入探讨体育数据分析的技术架构、应用场景和商业价值。一、数据采集与处理技术架构现代体育数据采集系统采用分布式架构,集成了计算机视觉、惯性测量单元(IMU)和生物电传感器等多模态数据源。计算机视觉系统通过高速摄像机和深度学习算法,可实现运动
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc