HashMap、LinkedHashMap和LRU缓存

概述

也许我们都知道,HashMap实现map接口来存放键值对的,在OC中也有对应的NSDictionary. 那么我们如何实现一个key 和value 的存储呢. 在我们的印象中只有链表和数组的数据结构,这里和大家一起探讨,分享HashMap 源码的实现细节.

原理探索

先看段简单的代码.

class MyMap{
Entry [] table ;
Entry{
K k;
V v;
get(K k){
}
put(K k,V v){
boolean isExisitK = false;
  for(int i = ; i < table.lenth; i++){
        Entry node = table[i];
        if(node.getKey().equal(k)){
           isExisitK= true;
            node.value = v;
        }
  }
if(!isExisitk){
  //考虑扩容
    expandCapacity();
  //新增对象
  Entry newNode = new Entry(k,v);
  table[currentSize] = newNode;
}
}}
}

如果我们按照上面代码的设计,内部HashMap的实现仍然是一个数组的存储,只不过这个数组存储的是一个Entry对象.理论上来讲只要数组无限大,那么就能存放无数对象.但是这样会带来的问题是,如果我不需要那么大的数组,你开辟出来就会造成内存的极大浪费,我们如果能动态调整数组大小就好了.于是我们再加入数组扩容代码.

Entry[] expandCapacity(){
      Entry [] newTable = new Entry[2*currentSize];
  for(int i = 0 ; i < currentSize ; i++){
      newTable[i] = table[i];
  }
table = newTable;
return table.
}

这样我们就能扩容了,也能解决问题,毕竟大多数情况我们是不需要扩充到无限大的.
假设如果要保存的数据量无限多呢?
显然上面仅仅使用数组的方式是不够的,另外在查找效率上是很低的,我们需要一一对比,使用for 循环每次从中找出对应K。解决上面的问题,我们提出两点设想.
1. 如果我们使用key 通过某个算法生成对应的数组索引下标,并且保证这个索引值在数组的范围之内,那么完全可以解决循环带来的查找开销

2. key 生成的hashCode 完全有可能相同,这会导致新问题,数组下标相同。这就需要解决hash冲突,这里我们如果使用链表的方式存储
hash 冲突解决我这里不说了,可以自行百度,google常用的是
1. 线性探测
2. 拉链法

结合上面提到的两点,我们需要结合数组和链表以及hash函数来完成实现.回到源码,这里参考的是android6.0源码,java 的实现可能有差异.

 public HashMap(int capacity) {
     .......省略次要代码......
        //可以看到这个是 产生一个空数组.
        makeTable(capacity);
    }

private HashMapEntry[] makeTable(int newCapacity) {
        @SuppressWarnings("unchecked") HashMapEntry[] newTable
                = (HashMapEntry[]) new HashMapEntry[newCapacity];
        table = newTable;
      //threshold 暂时不晓得干啥用的.
        threshold = (newCapacity >> 1) + (newCapacity >> 2); // 3/4 capacity
        return newTable;
    }

接着看下put 方法

 @Override public V put(K key, V value) {
        if (key == null) {
            return putValueForNullKey(value);
        }
        //下面两句是hash计算得出对应的数组下标.
        int hash = Collections.secondaryHash(key);
        HashMapEntry[] tab = table;
        int index = hash & (tab.length - 1);
        //这段代码表示从原来的数组或者链表中找出对应的key
        for (HashMapEntry e = tab[index]; e != null; e = e.next) {
             //如果存在对应的key 则替换相应的值.
            if (e.hash == hash && key.equals(e.key)) {
                preModify(e);
                V oldValue = e.value;
                e.value = value;
                return oldValue;
            }
        }
        // 这里,显然是如果空间不够,那就扩容.
        modCount++;
        if (size++ > threshold) {
            tab = doubleCapacity();
            index = hash & (tab.length - 1);
        }
        //如果不存在新增一个实体
        addNewEntry(key, value, hash, index);
        return null;
    }
//添加新的对象.
 void addNewEntry(K key, V value, int hash, int index) {
        table[index] = new HashMapEntry(key, value, hash, table[index]);
    }

//扩容函数
private HashMapEntry[] doubleCapacity() {
        HashMapEntry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            return oldTable;
        }
        int newCapacity = oldCapacity * 2;
        HashMapEntry[] newTable = makeTable(newCapacity);
        if (size == 0) {
            return newTable;
        }

        for (int j = 0; j < oldCapacity; j++) {
            /*
             * Rehash the bucket using the minimum number of field writes.
             * This is the most subtle and delicate code in the class.
             */
            HashMapEntry e = oldTable[j];
            if (e == null) {
                continue;
            }
            int highBit = e.hash & oldCapacity;
            HashMapEntry broken = null;
            newTable[j | highBit] = e;
            for (HashMapEntry n = e.next; n != null; e = n, n = n.next) {
                int nextHighBit = n.hash & oldCapacity;
                if (nextHighBit != highBit) {
                    if (broken == null)
                        newTable[j | nextHighBit] = n;
                    else
                        broken.next = n;
                    broken = e;
                    highBit = nextHighBit;
                }
            }
            if (broken != null)
                broken.next = null;
        }
        return newTable;
    }

put三部曲
1:查找是否存在该key ,存在更新.
2:不存在该key的情况,新增对象之前,确定是否扩容.
3:新增对象.
get 函数不讲了太简单.代码如下

public V get(Object key) {
        if (key == null) {
            HashMapEntry e = entryForNullKey;
            return e == null ? null : e.value;
        }
        int hash = Collections.secondaryHash(key);
        HashMapEntry[] tab = table;
        for (HashMapEntry e = tab[hash & (tab.length - 1)];
                e != null; e = e.next) {
            K eKey = e.key;
            if (eKey == key || (e.hash == hash && key.equals(eKey))) {
                return e.value;
            }
        }
        return null;
    }

先从数组中查找对应的value,再从该对象的所在的链表中查找.
HashMap的基本讲解就到这了,从上总结几点

  1. HashMap的实质是数组 + 链表存储.
  2. Hashmap的key 和 value的遍历是无序的,因为本来根据key生成的索引本无序.

LinkedHashMap

在谈到LRU缓存的时候我们第一眼看到的是LinkedHashMap来存储缓存对象,在OC中使用的是NSCache 对象(在某些博文中看到,说也使用的LRU方式),该对象的存储特点是最近加入或者访问的会自动放到队列头部.看下具体代码

@Override void addNewEntry(K key, V value, int hash, int index) {
        LinkedEntry header = this.header;

        // Remove eldest entry if instructed to do so.
        LinkedEntry eldest = header.nxt;
        if (eldest != header && removeEldestEntry(eldest)) {
            remove(eldest.key);
        }
        // Create new entry, link it on to list, and put it into table
        LinkedEntry oldTail = header.prv;
        LinkedEntry newTail = new LinkedEntry(
                key, value, hash, table[index], header, oldTail);
        table[index] = oldTail.nxt = header.prv = newTail;
    }

@Override public V get(Object key) {
        /*
         * This method is overridden to eliminate the need for a polymorphic
         * invocation in superclass at the expense of code duplication.
         */
        if (key == null) {
            HashMapEntry e = entryForNullKey;
            if (e == null)
                return null;
            if (accessOrder)
                makeTail((LinkedEntry) e);
            return e.value;
        }
         //
        int hash = Collections.secondaryHash(key);
        HashMapEntry[] tab = table;
        for (HashMapEntry e = tab[hash & (tab.length - 1)];
                e != null; e = e.next) {
            K eKey = e.key;
            if (eKey == key || (e.hash == hash && key.equals(eKey))) {
                if (accessOrder)
                    makeTail((LinkedEntry) e);
                return e.value;
            }
        }
        return null;
    }

    /**
     * Relinks the given entry to the tail of the list. Under access ordering,
     * this method is invoked whenever the value of a  pre-existing entry is
     * read by Map.get or modified by Map.put.
     */
    private void makeTail(LinkedEntry e) {
        // Unlink e
        e.prv.nxt = e.nxt;
        e.nxt.prv = e.prv;

        // Relink e as tail
        LinkedEntry header = this.header;
        LinkedEntry oldTail = header.prv;
        e.nxt = header;
        e.prv = oldTail;
        oldTail.nxt = header.prv = e;
        modCount++;
    }

linkedHashMap总结

  1. 跟HashMap不同的是LinkedHashMap 有另一套将所有对象关联起来的双向链表规则,即LinkedHashMap有两套存储规则.
  2. 当put or get 对象时,该对象会被排序到队列头部. 当然 accessOrder(访问排序) 必须设置成true

LRU 缓存

下面是一个缓存的设计样本.

/**
 * 
 * LRU 算法的核心 是LinkedHashMap 因其本身在accessOrder = true 时访问(get 和 put)的节点会被移动到最末尾,所以最先删除的就是很少被使用的》
 *  
 * @since 1.8.1
 */
public class LruMemoryCache implements MemoryCache {

    private final LinkedHashMap map;

    private final int maxSize;
    /** Size of this cache in bytes */
    private int size;

    /** @param maxSize Maximum sum of the sizes of the Bitmaps in this cache */
    public LruMemoryCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap(0, 0.75f, true);
    }

    /**
     * Returns the Bitmap for {@code key} if it exists in the cache. If a Bitmap was returned, it is moved to the head
     * of the queue. This returns null if a Bitmap is not cached.
     */
    @Override
    public final V get(String key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }
    
        synchronized (this) {
            return map.get(key);
        }
    }

    /** Caches {@code Bitmap} for {@code key}. The Bitmap is moved to the head of the queue. */
    public final boolean put(String key, V value) {
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }

        synchronized (this) {
            size += sizeOf(key, value);
            V previous = map.put(key, value);
            if (previous != null) {
                size -= sizeOf(key, previous);
            }
        }

        trimToSize(maxSize);
        return true;
    }

    /**
     * Remove the eldest entries until the total of remaining entries is at or below the requested size.
     *
     * @param maxSize the maximum size of the cache before returning. May be -1 to evict even 0-sized elements.
     */
    private void trimToSize(int maxSize) {
        while (true) {
            String key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!");
                }
                if (size <= maxSize || map.isEmpty()) {
                    break;
                }

                Map.Entry toEvict = map.entrySet().iterator().next();
                if (toEvict == null) {
                    break;
                }
                key = toEvict.getKey();
                value = toEvict.getValue();
                //这句代码是一个核心,移除对应的缓存,从队列尾移除.
                map.remove(key);
                size -= sizeOf(key, value);
            }
        }
    }

    /** Removes the entry for {@code key} if it exists. */
    @Override
    public final V remove(String key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        synchronized (this) {
            V previous = map.remove(key);
            if (previous != null) {
                size -= sizeOf(key, previous);
            }
            return previous;
        }
    }

    @Override
    public Collection keys() {
        synchronized (this) {
            return new HashSet(map.keySet());
        }
    }
    @Override
    public void clear() {
        trimToSize(-1); // -1 will evict 0-sized elements
    }

    /**
     * Returns the size {@code Bitmap} in bytes.
     * 

* An entry's size must not change while it is in the cache. */ private int sizeOf(String key, V value) { //if(V instanceof ) return 0;//value.getRowBytes() * value.getHeight(); } @Override public synchronized final String toString() { return String.format("LruCache[maxSize=%d]", maxSize); } }

你可能感兴趣的:(HashMap、LinkedHashMap和LRU缓存)