- 全员DeepSeek时代,前端能做些什么?
二川bro
前端智能AI前端deepseek
全员DeepSeek时代,前端能做些什么?前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/cccDeepSeek开发阶段测试阶段部署阶段智能代码生成设计稿转代码实时代码审查测试用例生成自动化问题定位构建优化建议性能预测模型一、DeepSeek带来的前端范式变革1.1传统前端开发痛点分析DeepSee
- VMware ESXi 8.0U3d macOS Unlocker & OEM BIOS 2.7 标准版和厂商定制版
esxi
VMwareESXi8.0U3dmacOSUnlocker&OEMBIOS2.7标准版和厂商定制版ESXi8.0U3标准版,Dell(戴尔)、HPE(慧与)、Lenovo(联想)、IEITSYSTEMS(浪潮信息)、Cisco(思科)、Fujitsu(富士通)、Hitachi(日立)、NEC(日电)、Huawei(华为)、xFusion(超聚变)OEM定制版请访问原文链接:https://sysi
- ZooKeeper 的 Watch 机制是什么?
Shockang
大数据技术体系大数据zookeeper
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文Watch机制的简介ZooKeeper提供了分布式数据发布/订阅功能,一个典型的发布/订阅模型系统定义了一种一对多的订阅关系,能让多个订阅者同时监听某一个主题对象,当这个主题对象自身状态变化时,会通知所有订
- Manus要邀请码?来试试 OpenManus:纯开源AI Agent 神器+简单三步上手实战指南
大F的智能小课
DeepSeek技术解析和实战大模型理论和实战人工智能深度学习机器学习
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。更多文章可关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!一、Manus介绍Manus(拉丁语"手脑并用")作为全球首款通用型AIAgent,其核心突破在于实现了从"被动响应"到"主动执行"的跨越。与传统AI助手不同,它通过多智能体架构在云端虚拟机中运行,能自主调用浏览器、代码
- 搜广推校招面经四十
Y1nhl
搜广推面经机器学习搜索算法人工智能推荐算法算法
字节-广告算法一、离线AUC涨了,但AB实验没涨,可能的原因?1.1.线上线下得样本空间不一致(SSB)线上模型使用的是实时获取的点击、曝光数据。线下使用的离线数据。这可能导致数据分布存在偏差。线上数据受曝光机制、冷启动、新品推荐等因素影响,与离线数据不完全匹配。线下数据存在采样偏差1.2.AUC这些指标无法衡量线上打分准确性。AUC毕竟只是衡量排序1.2.1.引申:PCOC(预估值/真实后验概率
- 在 CentOS 上解压 JAR 包的完整指南
码农阿豪@新空间
面试centosjarlinux
个人名片作者简介:java领域优质创作者个人主页:码农阿豪工作室:新空间代码工作室(提供各种软件服务)个人邮箱:[
[email protected]]个人微信:15279484656个人导航网站:www.forff.top座右铭:总有人要赢。为什么不能是我呢?专栏导航:码农阿豪系列专栏导航面试专栏:收集了java相关高频面试题,面试实战总结️Spring5系列专栏:整理了Spring5重要知识点与
- 清华团队发布多模态“神探”Migician:24.94%性能碾压,解锁多图定位的无限可能—— 安防、自动驾驶、医疗影像的AI“鹰眼”革命
花生糖@
AIGC学习资料库人工智能自动驾驶机器学习
引言:当AI学会“跨图追凶”2025年,安防监控摄像头每天产生3.5万亿帧画面,自动驾驶汽车每秒处理20路传感器图像,医疗影像科医生年均分析50万张CT片——多图像定位能力已成为AI落地的命门。清华大学联合北交大、华中科大发布的Migician模型,凭借24.94%的性能碾压优势,让AI首次实现“跨图像精准狙击”。这个突破性工具,正在重新定义从安防到医疗的20+行业规则。一、技术深析:Migici
- 自然语言处理(NLP)领域大语言模型学习目录大全
彬彬侠
大模型自然语言处理NLP大模型LLMGPTBERTGLM
本文主要收集了自然语言处理(NLP)领域的大语言模型,可以可以通过点击标题链接查看具体的详情。GPT系列GPT-1(GenerativePre-trainedTransformer1)模型GPT-1(GenerativePre-trainedTransformer1)是OpenAI在2018年6月提出的第一代GPT模型,也是第一个基于Transformer结构的自回归(Autoregressive
- DeepSeek时代:AI如何重塑软件开发的每个阶段,效率提升全解析
阿三0404
人工智能
在软件开发领域,时间就是竞争力。传统的瀑布模型和敏捷开发流程中,需求偏差、重复编码、测试遗漏等问题不断消耗团队精力。随着以DeepSeek为代表的AI技术突破,从需求分析到运维监控的每个环节都在发生效率革命。本文将深入解析AI在开发全流程中的具体应用,并通过真实数据揭示其带来的效率跃升。一、需求分析阶段:从模糊需求到精准拆解(效率提升65%)AI工具:自然语言处理(NLP)、需求图谱生成应用场景:
- 深度剖析QwQ模型:技术、应用与前景展望
萧十一郎@
python人工智能
目录一、引言1.1研究背景与目的1.2研究意义1.3研究方法与创新点二、QwQ模型的基本概述2.1定义与概念2.2发展历程2.3模型架构与原理2.3.1整体架构2.3.2关键技术与原理三、QwQ模型的性能表现3.1数学推理能力3.1.1AIME24评测集表现3.1.2实际案例分析3.2编程能力3.2.1LiveCodeBench评估结果3.2.2代码生成案例展示3.3通用能力测试3.3.1常识推理
- 基于 Python 对百度热搜 “Manus 推出引发科技圈震动” 的数据分析
萧十一郎@
pythonpython百度科技
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4关键词提取与词频统计2.5情感分析(简单示例,实际可采用更复杂模型)2.6数据可视化三、主要的代码难点解析3.1数据收集3.2数据清洗-文本预处理3.3关键词提取与词频统计3.4情感分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2文本预处理改进4.3关键词提取改进4.4情感分析改进4.5可视化改进一、案
- Manus的基于Sentence-BERT与ChromaDB的语义检索系统设计与实现
设计狗和程序猿
人工智能AI行业报告bert人工智能深度学习科技github自然语言处理
基于Sentence-BERT与ChromaDB的语义检索系统设计与实现——面向高维向量存储的语义检索优化研究摘要本文提出一种融合Sentence-BERT深度语义编码与ChromaDB向量数据库的语义检索框架。针对传统关键词匹配方法在语义鸿沟问题上的局限性,采用预训练语言模型生成768维语义向量,通过ChromaDB实现高效向量存储与近似最近邻搜索(ANN)。实验表明,在MSMARCO数据集上,
- 解锁 Hugging Face 的 smolagents:AI 代理的革命性突破!
真智AI
人工智能python开发语言机器学习pandas
利用简单却强大的AI代理框架提升你的工作效率!AI代理的崛起随着大型语言模型(LLM)推理能力的增强,AI代理成为了当前最热门的话题。这些代理不仅能够独立做出决策,还能根据用户输入执行任务。如果你对AI代理不太了解,可以将其理解为一个由LLM控制工作流的程序。AI代理的核心理念是:让机器执行过去无法完成的任务。随着AI代理的趋势不断上升,市面上涌现了许多AI代理框架。在众多代理框架中,smolag
- 基于MATLAB_Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢 附参考文献
qq924711725
MATLABmatlab开发语言
基于MATLAB/Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢附参考文献光储电解制氢模型,光伏制氢,电解槽恒功率制氢,光伏耦合PEM制氢,母线电压维持800V。光伏采用mppt最大功率跟踪;储能采用电压电流双闭环控制;电解槽采用功率外环加电流内环控制,恒功率制氢。光伏出力不足时,蓄电池出力,光伏出力充足时,蓄电池充电,波形稳定,运行完美。附相关参考文献。谢谢理解!好的
- EasyRTC嵌入式音视频通话SDK:基于ICE与STUN/TURN的实时音视频通信解决方案
EasyCVR
RTC音视频实时音视频h.265人工智能webrtc
在当今数字化时代,实时音视频通信技术已成为人们生活和工作中不可或缺的一部分。无论是家庭中的远程看护、办公场景中的远程协作,还是工业领域的远程巡检和智能设备的互联互通,高效、稳定的通信技术都是实现这些功能的核心。EasyRTC嵌入式音视频通话SDK支持多种类型的网络环境,能够适应不同的网络条件,确保在各种场景下都能实现高效、稳定的实时音视频通信。以下是EasyRTC支持的主要网络环境类型:1、有线网
- 企业AI数据安全白皮书:深寻模型会话保护与安当TDE实战
安 当 加 密
人工智能
一、引言人工智能正在重塑企业的业务流程与创新模式,从智能客服到辅助决策,从图像识别到自然语言处理,AI模型正逐步渗透到企业运营的各个环节。然而,随着AI技术的深入应用,数据安全问题也如影随形。对于部署在企业内网的DeepSeek模型而言,员工与模型的会话内容往往包含企业的核心商业信息、敏感技术参数以及员工个人隐私等关键数据。一旦这些数据遭到泄露、篡改或恶意利用,不仅会给企业带来巨大的经济损失,还可
- 就在刚刚!马斯克决定将“地球上最聪明的人工智能”Grok-3免费了!
源代码杀手
AI技术快讯人工智能python
Grok-3概述与关键功能Grok-3是由xAI开发的先进AI模型,于2025年2月19日发布,旨在提升推理能力、计算能力和适应性,特别适用于数学、科学和编程问题。作为xAI系列模型的最新版本,Grok-3延续了公司对构建强大且安全的AI系统的承诺,并推动人工智能在多个领域的应用。Grok-3的核心优势在于其大规模强化学习(RL)优化,能够在几秒到几分钟内进行深度推理,适应复杂任务的需求。配备的D
- python前景和待遇-Python就业前景怎么样?薪资待遇多少
weixin_37988176
Python就业前景怎么样?薪资待遇多少?Python上手容易,入门简单Python是一门面向对象的编程语言,编译速度超快。它具有丰富和强大的库,常被称为"胶水语言”,能够把用其他语言编写的各种模块(尤其是C/C)很轻松地联结在一起。其特点在于灵活运用,因为其拥有大量第三方库,所以开发人员不必重复造轮子,就像搭积木一样,只要擅于利用这些库就可以完成绝大部分工作。如果你想选择一种语言来入门编程,那么
- Ollama:让大型语言模型触手可及
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
Ollama:让大型语言模型触手可及导语:近年来,大型语言模型(LLM)发展迅猛,但对于普通用户而言,搭建和使用LLM仍有一定门槛。Ollama应运而生,它是一个轻量级、可扩展的框架,致力于让每个人都能轻松构建和运行本地LLM。一键安装,轻松上手Ollama提供了简单易用的安装方式,无论你是macOS、Windows还是Linux用户,都能快速开始使用。macOS:下载Windows(预览版):下
- DeepSeek这么火,一文教你本地部署DeepSeek!
入职啦
pythonpythondeepseek部署持续部署AI人工智能
要说年假最火的是什么,DeepSeek绝对在话题榜上,公众号几乎都是关于他的,今天入职啦也来和大家聊一聊我们AI领域的新星–DeepSeek,顺便也教大家部署一套属于自己的本地搜索服务。为什么DeepSeek这么火?一、技术架构优势DeepSeek采用创新的混合模型架构,将传统机器学习与深度学习有机结合。这种架构既保留了传统方法的可解释性,又具备深度学习的强大表征能力。通过自适应学习机制,Deep
- #深度优化提示词模板:解锁DeepSeek R1终极潜力的系统方案
领码科技
AI应用技能篇低代码提示词优化DeepSeekR1AI交互设计智能对话系统
摘要本文提出针对DeepSeekR1大模型的深度提示词优化体系,基于认知心理学原理与机器学习特征构建四维优化框架。通过解析模型工作机制、设计结构化模板、实战案例验证及进阶调优策略,形成覆盖基础到高阶的完整优化方案。研究显示优化后的提示词模板可使任务准确率提升40%,响应相关性提高55%。方案兼具理论深度与实践价值,为开发者提供可落地的优化指南。关键词:提示词优化、DeepSeekR1、AI交互设计
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- 腾讯元宝超越DeepSeek?登顶下载榜:AI 的“下一战”拼什么?
算家计算
话题文章人工智能算家云腾讯元宝DeepSeekAI竞争
3月3日深夜,腾讯元宝APP在中国区苹果应用商店免费App下载排行榜上,上升至第一,超越DeepSeek。超越DeepSeek登顶榜首,腾讯元宝有什么不同?一方面,腾讯元宝的爆发始于2月13日的重大更新:同时支持混元与DeepSeek模型。前者擅长快速响应(如混元TurboS“秒回”),后者专注深度推理,形成互补。这种“双引擎”模式,既满足用户即时需求,又提供复杂任务的处理能力,成为差异化竞争的核
- swagger基本使用及常用注解
耀辰
框架apiswagger2
一、介绍Swagger是一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务。总体目标是使客户端和文件系统作为服务器以同样的速度来更新。文件的方法,参数和模型紧密集成到服务器端的代码,允许API来始终保持同步。作用:1.接口的文档在线自动生成。2.功能测试。每当我在学习一门知识的都会习惯性的去看他的介绍,了解出现的起源、使用的目的。或许有人就会问了,知道是什么但是还是不
- 抖音采集工具Gui版:高效无水印下载抖音视频的神器
东风西巷
音视频软件需求
抖音采集工具Gui版是一款由52pojie论坛的@biqiang大神自制的功能强大的采集工具。它专为抖音视频下载设计,能够帮助用户轻松获取抖音平台上的各种视频资源,支持批量下载,极大地提升了下载效率。全面的资源采集支持采集抖音作品、Webp动态封面、短剧、喜欢、话题、音乐等多种内容。无论是热门视频还是小众作品,都能轻松下载。批量下载与高效管理用户可以批量下载指定作者的所有作品、单个视频、某话题下的
- 3.6手写数字识别项目
不要不开心了
pytorch神经网络人工智能机器学习深度学习
今天的内容为手写数字识别项目1.数据准备:-使用`torchvision.datasets`加载MNIST数据集。-通过`transforms.Compose`对数据进行预处理,包括转换为张量和归一化。-使用`DataLoader`创建训练和测试数据集的生成器。2.可视化源数据:-使用`matplotlib`库可视化测试集中的部分图像,并显示其对应的真实标签。3.构建模型:-定义一个包含两个隐藏层
- 想知道的都有!大模型的定义、基本架构、训练、经典代表、应用和挑战全解析
和老莫一起学AI
语言模型人工智能自然语言处理学习大模型ai转行
导读都2024年了,学习AI相关的人或多或少的听说过“大模型”。目前,大模型技术以其庞大的参数规模和卓越的性能,成为了推动行业进步的新引擎。本文将带您深入探索大模型的神秘世界,从其定义、基本原理、训练三步骤,到Prompt技术的巧妙应用,以及大模型在各行业的广泛应用和面临的挑战。无论您是AI领域的专业人士,还是对技术充满好奇的普通读者,本文都将为您提供一个全面、深入的大模型知识图谱。1、大模型的定
- 5人3小时复刻Manus?开源OpenManus项目全解剖,我的DeepSeek股票报告这样诞生
大F的智能小课
DeepSeek技术解析和实战大模型理论和实战数据库人工智能python
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。更多文章可关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!OpenManus是什么1.项目背景OpenManus是由MetaGPT核心团队仅用3小时复刻而成的开源项目,其在GitHub上线首日便获得了10k+的星标(不过下午查看时仅4k)。该项目的核心价值主要体现在以下三个方面
- C语言基础02——控制语句。二分查找、随机数讲解、求自幂数、整数逆序、X图案打印、猜数字、公约数公倍数、素数
蛋翼
C语言c++c语言后端
目录分支语句(选择结构)if语句switch语句循环语句while循环do…while循环for循环循环语句的练习转向语句goto语句break语句continue语句return语句什么是控制语句?控制语句用于控制程序的执行流程,以实现程序的各种结构方式,他们由特定的语句定义符组成,C语言有九种控制语句。可以分为以下三类:-条件判断语句/分支语句:if语句、switch语句-循环执行语句:dow
- 2025年渗透测试面试题总结-字某跳动-安全研究实习生(三面)(题目+回答)
独行soc
2025年渗透测试面试指南面试职场和发展web安全安全linux服务器
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录字某跳动-安全研究实习生(三面)一、攻防演练经典案例分析二、CSRF漏洞修复方案三、Java代码审计流程四、SQL注入防御体系五、域名访问技术解析六、登录页安全风险七、安全工具开发实践字某跳动-安全研究实习生(三面)聊聊攻防演练中比较得意,印象深刻的一次经历CSRF漏
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,