- 通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4(win版)
小霖同学onism
Multi-agentazuregpt-3flask
官方文档AzureOpenAI是微软提供的一项云服务,旨在将OpenAI的先进人工智能模型与Azure的基础设施和服务相结合。通过AzureOpenAI,开发者和企业可以访问OpenAI的各种模型,如GPT-3、Codex和DALL-E等,并将其集成到自己的应用程序和服务中。调用方式API调用:用户可以通过HTTP请求来调用AzureOpenAI提供的RESTAPI。请求中需要包含API密钥进行身
- 详述Python环境下配置AI大模型Qwen-72B的步骤
Play_Sai
#Python开发pythonAI大模型人工智能
随着人工智能技术的发展,大规模预训练模型如Qwen-72B等逐渐成为研究和应用的重点。本篇博客旨在提供一份详细的指南,帮助Python开发者们在自己的环境中顺利配置并使用Qwen-72B大模型。请注意:由于Qwen-72B这一模型目前并未公开存在,所以以下内容仅为假设性描述,实际上你需要替换为你想要配置的真实存在的大模型,例如GPT-3、BERT等。一、环境准备1.安装必要的库首先确保你已经安装了
- 洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索
汀、人工智能
AIAgentLLM技术汇总langchain人工智能自然语言处理大模型AgentLangGraphAIAgent
洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索1.LangChain简介LangChain是2022年10月底,由哈佛大学的HarrisonChase发起的基于开源大语言模型的AI工程开发框架。当然也可以问一下AI:通义千问2.5:LangChain是一个开源框架,专注于简化开发者利用大型语言模型(LLM)创建应用程序的过程。这些大型语言模型,如GPT-3
- 100天精通Python丨黑科技篇 —— 21、大语言模型_100天精通python快速入门到黑科技
前端收割机
程序员python科技语言模型
ChatGPT是OpenAI推出的一种基于GPT-3/4的聊天机器人。chatgpt的颠覆性影响主要体现在提高语言交流的便捷性、个性化服务、自动化客服和教育娱乐等方面,这些应用可以为用户带来更多的便利和乐趣,同时也为企业提供了更多的服务和商机。本文收录于《100天精通Python专栏-快速入门到黑科技》,是由CSDN内容合伙人丨全站排名Top4的硬核博主不吃西红柿倾力打造,分基础知识篇和黑科技应用
- 一口气了解大模型相关通识,基础笔记!
AI小白熊
笔记数据库架构面试职场和发展transformerai
一、大模型生态有哪些语言类大模型:GPT-3、GPT-3.5、GPT-4系列模型。并且,OpenAl在训练GPT-3的同时训练了参数不同、复杂度各不相同的A、B、C、D四项大模型(基座模型),用于不同场景的应用;其中,A、B、C、D模型的全称分别是ada、babbage、curie(居里)和davinci(达芬奇),四个模型并不是GPT-3的微调模型,而是独立训练的四个模型;四个模型的参数规模和复
- Chat Gpt我们自己造出的“外星人”
蔡昱
最近都在谈论ChatGpt,正好我在书店看书时,再次读到《人类简史》,看到他的序言是这么写的:这段文字看起来,语句通顺、逻辑合理对吧,这就是GPT-3写的,他和ChatGpt有共同的底层技术,只是运用侧重不一样,ChatGpt更专注于聊天和对话。对于这篇序言作者尤瓦尔是这么说的:这是一个强大的人工智能系统按指令模仿我的写作风格写的。GPT-3接到指令,要它为《人类简史》出版10周年写一篇新序,于是
- 【LLM大模型】24年最新大语言模型新书!这本LLM大模型黑书你一定要学(附PDF)
会AIGC的小孩
语言模型pdf人工智能大数据大模型自然语言处理ui
今天给大家推荐一本丹尼斯·罗斯曼(DenisRothman)编写的关于大语言模型(LLM)权威教程基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理>!Google工程总监AntonioGulli作序,这含金量不用多说,在这里给大家强烈推荐一下这本黑书,下面直接开始介绍!这本书犹如一道闪电,照亮了我在AI领域前行的道路。它不仅仅是一本书,更是一把钥匙,为我打开了通
- DALL-E 2: 重新定义图像生成的人工智能
-龙川-
推荐介绍学习笔记dall·e2
前言随着人工智能技术的迅猛发展,图像生成已经成为AI研究领域中的一个重要方向。OpenAI推出的DALL-E2无疑是其中的佼佼者。这一强大的生成模型能够根据文本描述生成高质量的图像,为创意工作者和各行各业的专业人士提供了全新的工具。本文将深入探讨DALL-E2的原理、应用、技术优势及其对未来图像生成领域的影响。一、DALL-E2简介DALL-E2是OpenAI开发的一种基于GPT-3架构的生成模型
- GPT 模型简史:从 GPT-1 到 GPT-4
三月七꧁ ꧂
大模型开发gpt人工智能自然语言处理语言模型transformergpt-3prompt
文章目录GPT-1GPT-2GPT-3从GPT-3到InstructGPTGPT-3.5、Codex和ChatGPTGPT-4GPT-1 2018年年中,就在Transformer架构诞生⼀年后,OpenAI发表了⼀篇题为“ImprovingLanguageUnderstandingbyGenerativePre-Training”的论文,作者是AlecRadford等⼈。这篇论文介绍了GP
- GPT-3:一个新应用生态系统诞生了
派派AI学院
「某个应用程序用2个基于GPT-3的机器人相互辩论。这是YouTube用户BakzT.Future剖析的14个GPT-3应用程序之一。」GPT-3以其庞大的规模成为OpenAI令人印象深刻的自然语言处理(NLP)模型。Transformerencoder-decoder模型之间由超过1,750亿个被称为参数的单词之间的加权值连接,将其15亿个参数的前身GPT-2打的落花流水。您只要输入要执行的任务
- 【小白教学】一文教你如何使用文心一言、ChatGPT指令
斯克AI
文心一言chatgptprompt
近年来,随着人工智能技术的迅速发展,大语言模型如GPT-3、BERT等逐渐成为AI研究和应用的热点。而在中国,百度推出的文心一言(ERNIEBot)也逐渐崭露头角,成为众多开发者关注的焦点。但是想要用好人工智能就要学会如何运用指令,接下来教大家一些简单的方法。万能公式实际上,如果你能更精确地提问,那么GPT的回答质量就会相应提高。下面我将分享一个提问的通用模式:角色+目标+需求+额外信息。角色:例
- 大模型是如何炼成的:揭秘深度学习训练的秘密与优化技巧
AI大模型_学习君
深度学习人工智能大模型训练ai大模型LLM大语言模型大模型应用
引言:近年来,人工智能领域的突破性进展与大模型的崛起密不可分。从GPT-3到BERT,这些大型预训练模型在各种任务上展现出了惊人的能力。那么,这些大模型是如何训练出来的呢?本文将通过具体案例,带你走进深度学习训练的世界,一探究竟,并分享一些大模型训练过程中的优化技巧。一、数据收集与预处理数据收集:大模型的训练需要海量的数据。例如,GPT-3的训练数据包含了数十亿网页文本,而BERT则使用了维基百科
- 全能型模型与专精型模型
青空之蓝qk
人工智能python
一、全能型模型全能型模型旨在处理广泛的任务,具备多种能力。例如,GPT-3和GPT-4等大型语言模型可以进行文本生成、翻译、对话和问答等多种功能。这类模型的优势在于:1.灵活性:全能型模型可以在多种应用场景中使用,适应性强。例如,企业可以使用同一个模型处理客户服务、内容创作和市场分析等任务,降低了开发和维护成本。2.知识整合:全能型模型通常经过大量数据训练,能够整合不同领域的知识,提供更全面的解决
- 一起来聊聊大模型的token
做个天秤座的程序猿
token大模型tokengpt
文章目录前言一、token是什么二、常用分词方法三、GPT-3的分词方式1.代码示例2.`Ġworld`和`world`的区别1)分词中的空格前缀2)后续计算中的区别3.为什么使用子词分词总结前言学习大模型的朋友肯定听说过大模型接口按token,自己编写代码的时候也经常看到token这个词,那它究竟是什么呢,我们一起来探究一下一、token是什么在大模型中,“token”通常指代文本中的最小单位,
- 大型语言模型RAG(检索增强生成):检索技术的应用与挑战
in_tsz
语言模型人工智能自然语言处理
摘要检索增强生成(RAG)系统通过结合传统的语言模型生成能力和结构化数据检索,为复杂的问题提供精确的答案。本文深入探讨了RAG系统中检索技术的工作原理、实现方式以及面临的挑战,并对未来的发展方向提出了展望。随着大型预训练语言模型(LLMs)如GPT-3和BERT的出现,自然语言处理(NLP)领域取得了显著进展。然而,这些模型在处理知识密集型任务时仍存在局限性,特别是在需要最新或特定领域知识的情况下
- 借助ChatGPT提高编程效率指南
AI臻蚌
chatgptchatgpt人工智能
PS:ChatGPT无限次数,无需魔法,登录即可使用,网页打开下面一、借助ChatGPT提高编程效率指南随着计算机技术的飞速发展,编程已经成为了现代社会中一个非常重要的技能。对于许多人来说,编程不仅是一项工作技能,而且是一种生活方式。然而,即使是最有经验的程序员,也会在编写代码时遇到困难和挑战。幸运的是,我们可以利用现代技术来提高编程效率,并使我们的工作更加轻松。ChatGPT是一种基于GPT-3
- 微软宣布 Power Fx 开源!
老率的IT私房菜
PowerFx是一种基于类似表格公式的低代码通用编程语言,它是一种强类型、声明性和函数式语言,可根据需要提供命令式逻辑和状态管理,Excel用户使用PowerFx将会特别熟悉。今年5月,微软通过与OpenAI的GPT-3模型的集成进一步提升了语言能力,PowerFx可以使用自然语言代替复杂的公式进行计算。此前,微软只开放了PowerFx的文档,并计划在今年年底前对实际源代码进行开源。今日,微软将P
- Bert基础(一)--transformer概览
Andy_shenzl
DeepLearing&pytorchNLPberttransformer人工智能
1、简介当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrentneuralnetwork,RNN)和长短期记忆(longshort-termmemory,LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等知名架构。本文将带领你深入了解Transformer的实现细节及工作原理。本章首先介绍Tran
- Prompt Engineering 提示工程教程详情
沐知全栈开发
prompt人工智能
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍提示工程的基本概念、实践方法和一些高级技巧。一、提示工程基础什么是提示工程?提示工程是一种艺术和科学,它涉及到设计智能提示,以激发大型语言模型的潜力,生成符合特定需求和
- Prompt Engineering 高级提示工程技巧
沐知全栈开发
prompt人工智能机器学习
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍一些高级提示工程技巧,帮助您更有效地利用大型语言模型。一、参数调整许多大型语言模型允许用户调整生成输出的参数,如温度、顶部概率和最大长度。这些参数可以影响输出的创造性和
- 【翻译】GPT-3架构,简述于“餐巾纸”上
liyane
AI人工智能gpt-3
这是一篇技术派文章,尤其是其中的绘制于“餐巾纸”上的手绘图,从数学角度对于大语言模型的架构给你一些新的启发。原文链接:https://dugas.ch/artificial_curiosity/GPT_architecture.html作者:DanielDugas翻译/编辑:liyane使用LLMChatAPI翻译;为了方便对照,把英文原文也对应在每段中文翻译之下。现在马上跟随作者开始一次开心的旅
- 【AIGC】大语言模型
AIGCExplore
AIGCAIGC语言模型人工智能
大型语言模型,也叫大语言模型、大模型(LargeLanguageModel,LLM;LargeLanguageModels,LLMs)什么是大型语言模型大型语言模型(LLM)是指具有数千亿(甚至更多)参数的语言模型,它们是通过在大规模文本数据上进行训练而得到的。这些模型基于Transformer架构,其中包含多头注意力层,堆叠在一个非常深的神经网络中。常见的LLM包括GPT-3、PaLM、Gala
- NLP_GPT到ChatGPT
you_are_my_sunshine*
NLP大模型自然语言处理gptchatgpt
文章目录介绍小结介绍从初代GPT到GPT-3,主要经历了下面几个关键时刻。GPT:2018年,OpenAl发布了这款基于Transformer架构的预训练语言模型,其参数数量为1.17亿(117M)。GPT运用单向自回归方法生成文本,先预训练大量无标签文本,再在特定任务上进行微调。GPT在多种NLP任务上取得了显著进步。GPT-2:2019年,OpenAI推出了GPT的升级版,拥有更多参数[15亿
- 如何使用Hugging Face:对Transformer和pipelines的介绍
第欧根尼的酒桶
transformer深度学习人工智能
一、transformer介绍众所周知,transformer模型(如GPT-3、LLaMa和ChatGPT)已经彻底改变了人工智能领域。它们不仅被用于自然语言处理,还被应用于计算机视觉、语音处理和其他任务中。HuggingFace是一个以变换器为核心的Python深度学习库。因此,在我们深入了解其工作原理之前,我们将探讨什么是transformer,以及为什么它们能够支持如此强大的模型。1.递归
- 大模型基础知识
lichunericli
LLM人工智能语言模型
主流的开源模型体系GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。BERT(BidirectionalEncoderRepresentationsfromT
- GPT3是否是强人工智能?
枯木嫩芽
今天和大家分享一下AI方向自然语言处理(NLP)领域内一个新的语言模型:GPT-3。GPT-3是继bert之后一次轰动NLP领域的语言模型,GPT-3是著名人工智能科研公司OpenAI开发的文本生成(textgeneration)人工智能,相关论文5月份已经发表,当时就以天文数字级别的1,750亿参数量引发轰动。训练该模型的数据达到了45TB,训练该语言模型的成本高达1200万美元的高价(喵喵前面
- ChatGPT的背后原理:大模型、注意力机制、强化学习
Python学研大本营
chatgpt
介绍ChatGPT机器人背后的原理,带你了解ChatGPT如何工作。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩本文主要介绍为ChatGPT提供动力的机器学习模型,将从大型语言模型的介绍开始,深入探讨使GPT-3得到训练的革命性的自注意机制,然后深入到从人类反馈强化学习,这是使ChatGPT出类拔萃的新技术。大型语言模型ChatGPT是一类机器学习自然语言处理进行推断的模型,称
- LLM的参数微调、训练、推理;LLM应用框架;LLM分布式训练
lichunericli
LLM人工智能语言模型自然语言处理
大模型基础主流的开源大模型有哪些?GPT-3:由OpenAI开发,GPT-3是一个巨大的自回归语言模型,拥有1750亿个参数。它可以生成文本、回答问题、翻译文本等。GPT-Neo:由EleutherAI开发,GPT-Neo是一个开源的、基于GPT架构的语言模型,拥有数十亿到百亿级的参数。GPT-J:也是由EleutherAI开发的,GPT-J是一个拥有60亿参数的开源语言模型。PaLM(Pathw
- 用35行代码开发一个自己的AI对话机器人
也鱼实验室
之前也写了好几篇关于ChatGPT的文章了,领略到了与深入优化的GPT-3(GenerativePre-trainedTransformer)对话过程中的各种惊喜。但是因为ChatGPT的爆发性流量和访问限制问题,平时使用的时候多多少少会不太方便。其实OpenAI本身就提供了大量的API接口,可以让用户免费使用开发出自己的WebAPP,包括我们今天要说的对话机器人,关于API的一些应用,我在之前一
- 如何利用ChatGPT填写表格数据
摆烂大大王
chatgptchatgpt
随着人工智能技术的迅速发展,ChatGPT等智能对话系统已经成为了我们生活中的得力助手。其中,利用ChatGPT填写表格数据是一项十分实用的功能,它可以帮助我们节省时间,提高工作效率。下面,我们将介绍如何利用ChatGPT来填写表格数据。了解ChatGPT的能力在开始之前,我们需要明白ChatGPT的能力。ChatGPT是一个基于GPT-3或GPT-4的对话式人工智能模型,它能够理解和生成自然语言
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi