题目如下数据范围观察数据范围发现s最长也就100也就是说O(n^2)的暴力法的时间复杂度也是可以接受的。不过本题使用不定长滑动窗口可以优化至O(n)是本人比较推荐的。那么滑动窗口是如何把时间复杂度优化成O(n)的呢?暴力法如下for(inti=0;imap;intn=s.size();if(n==0)return0;intmax1=1;intj=0;for(inti=0;i
leetcode_链表 21.合并两个有序链表
MiyamiKK57
leetcode链表算法
21.合并两个有序链表将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。思路:定义一个哑节点(dummynode),哑节点是一个初始的虚拟节点,它不存储有效值,只是方便操作,定义一个指针current指向哑节点,用于构建新链表。遍历两个链表,使用两个指针p1和p2分别指向list1和list2的头部,并比较p1.val和p2.val,将较小值的节点连接到c
30个整数映射到1个字节,查表法实现小范围内常数时间素性判定
磁悬浮青蛙呱呱呱
数据结构C#MATLAB素性测试位图
想用查表法实现小范围内的常数时间的素性判定,怎样节省存储空间呢?自然是1个bit代表1个整数的素性,同时,偶数不用存,个位为5的整数不用存,只有个位为1、3、7、9的整数才可能是素数,也就是每20个整数中只有8个数可能是素数,正好1个字节。但本文的标题是30个整数映射到1个字节,说明上面的方法还有优化的潜力。让我们来考虑31~60这30个整数中最多有几个数可能是素数,所有偶数以及个位是5的数都是合
不变初心数
阿猿收手吧!
#C语言经典题目c++算法c语言
不变初心数描述不变初心数是指这样一种特别的数,它分别乘2、3、4、5、6、7、8、9时,所得乘积各位数之和却不变(等于该数的各位数字之和)。例如18就是这样的数:18的2倍是36,3+6=9;18的3倍是54,5+4=9;……18的9倍是162,1+6+2=9。对于18而言,9就是它的初心。编写程序,输出指定范围内[a,b]的所有不变初心数。输入一行中给出2个正整数a和b,且a≤b≤10^5输出按
2013年蓝桥杯第四届C&C++大学B组真题及代码
GR鲸鱼
蓝桥杯C&C++真题蓝桥杯c++数据结构算法c语言
目录1A:高斯日记(日期计算)2B:马虎的算式(暴力模拟)3C:第39级台阶(dfs或dp)4D:黄金连分数(递推+大数运算)5E:前缀判断(代码填空)(枚举)6F:三部排序(代码填空)7G:错误票据(枚举)8H:翻硬币(找规律)9I:带分数(全排列暴力)10J:连号区间数(找规律)蓝桥杯大赛是从第四届才开始划分ABC组的,因此前三届的题目所有院校都是一样的。所以这里此专栏就从第四届开始刷题了,应
vue项目运行报:SassError: expected selector...
落日弥漫的橘_
前端vue.jswebpackcss
SassError:expectedselector错误通常由于Sass或SCSS文件中存在语法错误或选择器缺失,导致Sass编译器无法解析。Sass语法语法中误用深度选择器语法导致以上问题。/deep/和::v-deep都是用于Vue单文件组件(.vue文件)中的样式穿透选择器;/deep/在Sass中并不被支持,如果是在Vue单文件组件中,并且需要穿透样式,可以使用::v-deep代替/dee
新闻软文发稿是什么?有什么优势?
正义侠新闻软文
新闻软文发稿搜索引擎百度新浪微博经验分享
把软文以新闻稿件的方式散布出来,完成推广营销的目地,归属于互联网推广的一种技巧。伴随着互联网技术愈来愈关键,企业一般刚开始高度重视互联网推广,也想要在网上宣传上资金投入大量资产。软文发稿便是在那样的土壤层中渐渐地发展趋势起来。软文发稿必须把软文公布到别的服务平台上才行,现阶段较为时兴的服务平台有主流媒体、新闻媒体、自媒体、社交媒体,这种服务平台全是收费标准才可以公布的,并不是完全免费的。此外也是有
7. 马科维茨资产组合模型+金融研报AI长文本智能体(Qwen-Long)增强方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习算法大数据线性回归
目录0.承前1.深度金融研报准备2.核心AI函数代码讲解2.1函数概述2.2输入参数2.3主要流程2.4异常处理2.5清理工作2.7get_ai_weights函数汇总3.汇总代码4.反思4.1不足之处4.2提升思路5.启后0.承前本篇博文是对前两篇文章,链接:5.马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)6.马科维茨资产组合模型+政策意图A
总结:IDEA社区版接入AI代码工具
小魏的博客
机器学习大语言模型IDE相关软件intellij-ideajavaide
一、介绍本文主要记录下IDEA工具接入通义灵码、deepseek(深度求索)、豆包的方式。idea社区版(我的具体是:IntelliJIDEA2023.2.5(CommunityEdition))二、deepseek配置1、首先得去deepseek平台创建个apikey;生成key位置:DeepSeek默认会送500万的tokens,查看tokens用量:DeepSeek2、安装AutoDev插件
学习ESP32系列一个超级有用的网站
LS_learner
嵌入式嵌入式硬件
学习ESP32ESP32简介ESP32ArduinoIDEESP32ArduinoIDE2.0VSCode和PlatformIOESP32引脚分布ESP32输入输出ESP32PWMESP32模拟输入ESP32中断定时器ESP32深度睡眠协议ESP32Web服务器ESP32LoRaESP32BLEESP32BLE客户端-服务器ESP32蓝牙ESP32MQTTESP32ESP-NOWESP32Wi-F
侯捷 C++ 课程学习笔记:开启 C++ 深度探索之旅
秃头小饼干
jvm开发语言c++
在C++的学习道路上,侯捷老师的课程宛如一座明亮的灯塔,为无数学习者照亮前行的方向。经过一段时间对侯捷C++课程的深入学习,我收获颇丰,在此将自己的学习笔记和感悟分享给大家,希望能对正在学习C++或者准备踏入C++领域的朋友们有所帮助。一、课程初印象初次接触侯捷老师的课程,就被其深入浅出的讲解风格所吸引。老师不仅有着深厚的技术功底,更具备出色的教学能力,能够将复杂的C++知识以通俗易懂的方式呈现出
深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(下.代码部分)
Allen_LVyingbo
医疗高效编程研发python健康医疗pythonpyqt语言模型人工智能
医疗MLLM框架编程实现本医疗MLLM框架结合Python与PyQt6构建,旨在实现多模态医疗数据融合分析并提供可视化界面。下面从数据预处理、模型构建与训练、可视化界面开发、模型-界面通信与部署这几个关键部分详细介绍编程实现。6.1数据预处理在医疗MLLM框架中,多模态数据的预处理是非常关键的一步,它直接影响到后续模型的训练效果和性能。我们需要对医学影像、文本数据和音频数据分别进行预处理,以确保数
计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
4-2 计算机视觉-卷积神经网络-基本网络组件
沉睡的小卡比兽
AI基础知识cnn卷积核端到端训练计算机视觉卷积神经网络
1、为什么卷积核一般都是奇数?2、由哪些层组成了基本的卷积神经网络,作用分别是什么?3、卷积层和池化层有什么区别?4、什么是端到端学习end-to-end?1、为什么卷积核一般都是奇数?(1)保护位置信息:保证锚点刚好在中间,方便以模块中心为标准进行滑动卷积,避免了位置信息发生偏移(2)padding时的对称性:保证padding时图像的两边依然对齐(3)一些历史尝试的经验,如边缘检测等,还有pa
高阶C语言|数组名的深度解析(数组名结合sizeof与strlen的详解)
我想吃余
C语言篇c语言开发语言
欢迎讨论:在阅读过程中有任何疑问,欢迎在评论区留言,我们一起交流学习!点赞、收藏与分享:如果你觉得这篇文章对你有帮助,记得点赞、收藏,并分享给更多对C语言感兴趣的朋友!文章目录前言正文开始~1.`sizeof(数组名)`:计算整个数组的大小2.`&数组名`:取整个数组的地址3.数组名作为首元素地址的指针4.一维数组的深度解析5.字符数组的解析6.字符串数组的特别处理7.指针变量与字符串的关系8.二
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
springboot接入deepseek深度求索 java
笑发财了1
javaspringboot服务器
以下是在springboot中接入aideepseek的过程。官网并没有java的示例。1.创建APIkeydeepseekAPIkeys点击创建APIkey,把创建的key值复制下来,以后就不能再查看了,只能重新创建。2.封装询问deepseek的工具方法添加key值和询问路径。API_KEY为你创建的key值。privatestaticfinalStringAPI_URL="https://a
Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
车联网产业中网络安全与数据安全应该怎么做
securitypaper
白皮书学习web安全安全网络
说明非常看好车联网产业的发展,新的产业出现,必将出现新的安全问题,因此希望对车联网安全所有学习和研究,本文主要是学习关于加强车联网和数据安全工作的通知2021做的一些摘录,希望不断的深入学习车联网相关安全内容车联网介绍车联网是新一代网络通信技术与汽车、电子、道路交通运输等领域深度融合的新兴产业形态。智能网联汽车是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与车、路、
快猫视频模板源码定制开发 苹果CMS 可打包成双端APP
希希分享
快猫视频模板源码
苹果CMS快猫视频网站模板源码,可用于开发双端APP,后台支持自定义参数,包括会员升级页面、视频、演员、专题、收藏和会员系统等完整模块。还可以直接指定某个分类下的视频为免费专区,具备完善的卡密支付体系,无需人工管理和挂码。该模板提供三种播放界面,分别适用于未注册会员、普通注册会员和VIP会员,每个界面的提示内容都不同。模板适用于PC和WAP,并且可以轻松打包成APP。除了网站LOGO和自定义广告等
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
【趋势】《2024—2026金融科技十大趋势预测》一览
学客汇
商业研究商业观察人工智能大数据金融科技科技洞察IT趋势金融行业预测
本白皮书基于新华三在金融行业的前沿实践和IDC的全球研究成果,深入分析了金融科技领域的十大关键趋势,旨在为金融机构提供前瞻性的战略指导和业务创新的参考。导言当前,在地缘政治冲突加剧、商业经济市场环境高度不确定、数字化业务加速发展的背景下,金融行业处于深度变革的潮流中,金融机构亟需重新思考其在技术支出、业务决策及业务创新发展等方面的投资重点。此外,金融机构也越来越需要借助大数据和AI技术来提升业务的
Feed流系统重构:架构篇
m0_72864708
重构架构
重构对我而言,最大的乐趣在于解决问题。我曾参与一个C#彩票算奖系统的重构,那时系统常因超时引发用户投诉。接手任务时,我既激动又紧张,连续两天几乎废寝忘食地编码。结果令人振奋,算奖时间从一小时大幅缩短至十分钟。去年,我作为架构师,参与了家校朋友圈应用的重构。这个应用虽小,但功能齐全。我将分享这次架构设计的思路,探讨如何通过精心策划的重构,提升应用的性能和用户体验。01应用背景1.应用介绍移动互联网时
汽车电子电气架构从12V提升至48V,带来那些好处? 包括那些改变?
achirandliu
汽车架构汽车电子电气架构从12V升到48V
标签:汽车电子电气架构;从12V提升至48V;汽车电子电气架构从12V提升至48V,带来那些好处?包括那些改变?将传统汽车的电子电气架构电压从12V提升至48V,既有显著的优势,也需要对车辆的电子元器件和电气架构进行相应的调整。一、提升电压至48V的好处:降低电流,提高效率:减少能量损耗:在相同功率下,电压提高一倍,电流减半。电流的减少降低了电阻损耗(I²R损耗),提高了能源利用效率。减轻线束重量
no such element: Unable to locate element: {“method“:“xpath“,“selector“:“//select[@id=‘nr‘]“}
张某人想退休
fromseleniumimportwebdriverfromselenium.webdriver.support.selectimportSelectfromtimeimportsleepdriver=webdriver.Chrome()driver.implicitly_wait(10)driver.get('http://www.baidu.com')#鼠标悬停至“设置”链接#driver.
Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
[IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><