Android handler小结

1.几个概念

Handler,消息发送与处理者
Message,消息
MessageQueue,消息队列
Looper,管理消息队列

2.构造Handler

一般我们都是这样初始化handler的

Handler handler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
        }
    };

进入handler的源码可以看到其构造函数

public Handler(Callback callback, boolean async) {
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

这里主要是获取到looper和messageQueue以便绑定,mCallback是一个内部接口对象,继承了handleMessage方法,mAsynchronous与postSyncBarrier有关,这里不讨论
Looper.myLooper()用来获取到当前线程的looper对象

public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

sThreadLocal是一个ThreadLocal对象,ThreadLocal可以保存各个线程存储的变量

3.Looper的初始化

这里分两种情况讨论

3.1主线程初始化looper

我们在主线程创建handler的时候并没有初始化looper,是因为主线程已经帮我们做好了,在ActivityThread.java的main方法里面

public static void main(String[] args) {
        ...
        Looper.prepareMainLooper();
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        Looper.loop();
    }
public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

prepare方法中的false用于区分主线程和其他线程的消息队列,只有主线程的消息才能更新UI

3.1其他线程初始化looper

在非主线程使用handler要手动初始化looper,即调用looper.prepare(),其中传递的参数为true

public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

4.sendMessage

4.1构造message

虽然我们会采用以下方式构造新的message,但是API还是建议使用obtain方法,这样可以达到复用的效果,避免内存占用

Message message = new Message();
Message message1 = Message.obtain();

public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

Message有2个重要的成员变量

    /*package*/ Handler target;
    /*package*/ Runnable callback;

target是最终去处理这条消息的handler,所以一个线程是允许存在多个handler,message根据target就知道要交给哪个handler去处理了
另外一个就是callback,这是一个runnable对象,如果我们使用postRunnable来发送消息,最终也会生成一个message,并把原来的runnable对象赋值给callback

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

4.2sendmessage

sendMessage或是sendMessageDelayed最后都会走到sendMessageAtTime

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

enqueueMessage会把当前的message放入消息队列,继续到MessageQueue去看

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这段函数的目的是在消息队列中寻找一个合适的插入点,并完成消息的插入,消息队列实际上是一个链表的结构,先进先出,符合其用途,但是消息队列的顺序是按照消息的执行时间来的,即message.when,所以,即使有一个message很早就进来了,但是其执行时间比较晚,那么,在新的消息被放如消息队列后,原来的消息也会被移动到链表的尾部
需要注意的是,这里面涉及到一个重要的变量mBlocked,如果有一个消息需要延时执行,那么当消息队列中没有其他message需要立即处理的话,消息队列就会被阻塞住,mBlocke=true,这时如果再插入一条message并且需要执行的话就会唤醒消息队列,当然这里的阻塞/唤醒机制涉及到native层的知识,这里不做讨论

5.Looper.loop()

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
            }
...
            msg.recycleUnchecked();
        }
    }

虽然loop函数比较长,但是实际上就是在循环中不断取出message并分发给对应的handler

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

需要注意的是,Looper和MeeesageQueue都有for循环的代码块,不同的是Looper用来持续取出message并处理,MeeesageQueue中用来遍历message的链表并返回message对象,Looper中的是死循环,而MeeesageQueue中的不是(链表的长度是一定的)
如果下一个消息需要延时执行,会计算一个nextPollTimeoutMillis,调用nativePollOnce(ptr, nextPollTimeoutMillis)阻塞当前的消息队列,nativePollOnce会走到native层,借助了linux的epoll机制,到时后会自动唤醒
正常情况message没有延时执行的话就会返回链表头部的message

6.主线程Looper中的死循环为什么没有导致应用程序卡死崩溃

  • 死循环是保证线程持续运行的手段,例如binder
  • activity的创建,oncreate,onresume,onstop等生命周期方法都是在ActivityThread中handler+message完成调用的,ActivityThread所在的主线程可以理解为应用进程本身
  • 导致主线程卡死是在onCreate/onStart/onResume等函数中执行时间太长
    所以,Looper中的死循环是保证程序持续运行的关键,当没有message要处理或者message延时执行时,looper进入阻塞状态,减少CPU资源的占用

(参考源码sdk-25,Android7.1)

你可能感兴趣的:(Android handler小结)