import requests
from bs4 import BeautifulSoup as bs
import pandas as pd
from pandas import Series,DataFrame
详细内容请参考于本专栏爬虫:python如何获取天气数据
此处是获得 2011-01——2022-08的天气网址,看一看有没有问题
data_all=[]
mounths=['01','02','03','04','05','06','07','08','09','10','11','12']
for a in range(11,23):
if a ==22:
for b in range(8): #2022-08月份是此时的时刻
url='https://lishi.tianqi.com/ganyu/20{}{}.html'.format(a,mounths[b])
resp= requests.request("GET", url, headers=headers)
resp.encoding = 'utf-8'
soup = bs(resp.text,'html.parser')
tian_three=soup.find("div",{"class":"tian_three"})
print(url)
lishitable_content=tian_three.find_all("li")
for i in lishitable_content:
lishi_div=i.find_all("div")
data=[]
for j in lishi_div:
data.append(j.text)
data_all.append(data)
else :
for b in mounths: #除了2022年的其他年份天气数据
url='https://lishi.tianqi.com/ganyu/20{}{}.html'.format(a,b)
resp= requests.request("GET", url, headers=headers)
resp.encoding = 'utf-8'
soup = bs(resp.text,'html.parser')
tian_three=soup.find("div",{"class":"tian_three"})
print(url)
lishitable_content=tian_three.find_all("li")
for i in lishitable_content:
lishi_div=i.find_all("div")
data=[]
for j in lishi_div:
data.append(j.text)
data_all.append(data)
通过print(url)观看哪里出了问题,中途会发生未知错误,单独拿出来运行就可以解决此问题
将数据变成pd表,进行数据处理
weather=pd.DataFrame(data_all)
weather.columns=["当日信息","最高气温","最低气温","天气","风向信息"]
weather_shape=weather.shape
进行数据预处理
原图像
weather['当日信息'].apply(str)
result = DataFrame(weather['当日信息'].apply(lambda x:Series(str(x).split(' '))))
result=result.loc[:,0:1]
result.columns=['日期','星期']
weather['风向信息'].apply(str)
result1 = DataFrame(weather['风向信息'].apply(lambda x:Series(str(x).split(' '))))
result1=result1.loc[:,0:1]
result1.columns=['风向','级数']
weather=weather.drop(columns='当日信息')
weather=weather.drop(columns='风向信息')
weather.insert(loc=0,column='日期', value=result['日期'])
weather.insert(loc=1,column='星期', value=result['星期'])
weather.insert(loc=5,column='风向', value=result1['风向'])
weather.insert(loc=6,column='级数', value=result1['级数'])
结果类似如下:
最后对数据进行保存
weather.to_csv("XXX.csv",encoding="utf_8")
import requests
from bs4 import BeautifulSoup as bs
import pandas as pd
from pandas import Series,DataFrame
headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.5112.102 Safari/537.36 Edg/104.0.1293.63',
'Host':'lishi.tianqi.com',
'Accept-Encoding': "gzip, deflate",
'Connection': "keep-alive",
'cache-control': "no-cache"}
data_all=[]
mounths=['01','02','03','04','05','06','07','08','09','10','11','12']
for a in range(11,23):
if a ==22:
for b in range(8):
url='https://lishi.tianqi.com/ganyu/20{}{}.html'.format(a,mounths[b])
resp= requests.request("GET", url, headers=headers)
resp.encoding = 'utf-8'
soup = bs(resp.text,'html.parser')
tian_three=soup.find("div",{"class":"tian_three"})
print(url)
lishitable_content=tian_three.find_all("li")
for i in lishitable_content:
lishi_div=i.find_all("div")
data=[]
for j in lishi_div:
data.append(j.text)
data_all.append(data)
else :
for b in mounths:
url='https://lishi.tianqi.com/ganyu/20{}{}.html'.format(a,b)
resp= requests.request("GET", url, headers=headers)
resp.encoding = 'utf-8'
soup = bs(resp.text,'html.parser')
tian_three=soup.find("div",{"class":"tian_three"})
print(url)
lishitable_content=tian_three.find_all("li")
for i in lishitable_content:
lishi_div=i.find_all("div")
data=[]
for j in lishi_div:
data.append(j.text)
data_all.append(data)
weather=pd.DataFrame(data_all)
weather.columns=["当日信息","最高气温","最低气温","天气","风向信息"]
weather_shape=weather.shape
weather['当日信息'].apply(str)
result = DataFrame(weather['当日信息'].apply(lambda x:Series(str(x).split(' '))))
result=result.loc[:,0:1]
result.columns=['日期','星期']
weather['风向信息'].apply(str)
result1 = DataFrame(weather['风向信息'].apply(lambda x:Series(str(x).split(' '))))
result1=result1.loc[:,0:1]
result1.columns=['风向','级数']
weather=weather.drop(columns='当日信息')
weather=weather.drop(columns='风向信息')
weather.insert(loc=0,column='日期', value=result['日期'])
weather.insert(loc=1,column='星期', value=result['星期'])
weather.insert(loc=5,column='风向', value=result1['风向'])
weather.insert(loc=6,column='级数', value=result1['级数'])
weather.to_csv("赣榆的天气.csv",encoding="utf_8")