学习小组Day6笔记-鹅(待补充)

(由于加载版本过低,不能加载安装包,家里网速慢,明天去单位下载再重新安装,先交一个命令版本的作业,稍后补充)

一、安装和加载R包

1.镜像设置
两行代码就可以搞定

# options函数就是设置R运行过程中的一些选项设置
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源,当然可以换成其他地区的镜像

具体升级版可以看你还在每次配置Rstudio的下载镜像吗?

2.安装
install.packages(“包”)或者BiocManager::install(“包”)
取决于你要安装的包存在于CRAN网站还是Biocductor,存在于哪里?可以谷歌搜到。
3.加载
library(包)
require(包)
两个命令都可以

安装加载三部曲

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
ibrary(dplyr)

二、dplyr五个基础函数

1.mutate(),新增列
mutate(test, new = Sepal.Length * Sepal.Width)
2.select(),按列筛选
(1)按列号筛选
select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)
(2)按列名筛选
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
3.filter()筛选行
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))
4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序

arrange(test, desc(Sepal.Length))#用desc从大到小

5.summarise():汇总
对数据进行汇总操作,结合group_by使用实用性强
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差

先按照Species分组,计算每组Sepal.Length的平均值和标准差

group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

三、dplyr两个实用技能

1:管道操作 %>% (cmd/ctr + shift + M)
(加载任意一个tidyverse包即可用管道符号)

test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

2:count统计某列的unique值
count(test,Species)

四、dplyr处理关系数据

2个表进行连接,注意:不要引入factor

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 

1.內连inner_join,取交集
inner_join(test1, test2, by = "x")
2.左连left_join
left_join(test1, test2, by = 'x')
left_join(test2, test1, by = 'x')
3.全连full_join
full_join( test1, test2, by = 'x')
4.半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
5.反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
6.简单合并
在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1

test2 <- data.frame(x = c(5,6), y = c(50,60))
test2

test3 <- data.frame(z = c(100,200,300,400))
test3

bind_rows(test1, test2)

bind_cols(test1, test3)

你可能感兴趣的:(学习小组Day6笔记-鹅(待补充))