gdal python 图像金字塔,针对tif,tiff(生成图像金字塔,展示各层级图像)

创建图像金字塔

原创不易
导包

import os
from osgeo import gdal
import cv2
import shutil
import skimage.io as io
from PIL import Image
Image.MAX_IMAGE_PIXELS = None

判断文件夹是否存在,存在就删除清空,不存在保留

if os.path.exists(self.dir_path):
       	shutil.rmtree(self.dir_path)
        os.makedirs(self.dir_path)
 else:
     	os.makedirs(self.dir_path)

检查输入和输出路径


class Image_pyramid:
    def __init__(self,inputfpath):
        self.inputtfpath=inputfpath//输入文件路劲
        # print(self.inputtfpath)
        dir_list = self.inputtfpath.strip(' ').split('.')[0].split("/")[0:-1]
        print(dir_list)
        dir_list_pic=self.inputtfpath.strip(' ').split('.')[0].split("/")[-1]
        dir_path2=""
        for i in range(0,len(dir_list)):
            if len(dir_list[i])==0:
                continue
            else:
                dir_list2=str(os.path.join('/',str(dir_list[i])))
                dir_path2=str(dir_path2)+dir_list2
        self.dir_path=os.path.join(dir_path2,dir_list_pic)
        print(self.dir_path)
        if os.path.exists(self.dir_path):
        	shutil.rmtree(self.dir_path)
             os.makedirs(self.dir_path)
    	else:
        	os.makedirs(self.dir_path)
    print(self.dir_path)
    self.outputtfpath = os.path.join(dir_path2,"10")
    print(self.outputtfpath)

生成新的tif图像的名称10.tif

def gdal_pymaid2(self):
      if os.path.exists(self.outputtfpath):
          shutil.rmtree(self.outputtfpath)
          os.makedirs(self.outputtfpath)
      else:
          os.makedirs(self.outputtfpath)
      outputfilename = os.path.join(self.outputtfpath, "10.tif")
      print(333333333333333)
      print(outputfilename)

获取tif图像的宽度和高度


 inputDataset = gdal.Open(self.inputtfpath)
 print(inputDataset==None)
  inputBand = inputDataset.GetRasterBand(1)
  img_arraytif = inputDataset.ReadAsArray(0, 0,
                                     inputDataset.RasterXSize, inputDataset.RasterYSize)

获取原始卫星图像获取仿射矩阵信息,获取投影信息,创建tiff图像驱动,获取波段数量

im_geotrans = inputDataset.GetGeoTransform()  # 获取仿射矩阵信息
im_proj = inputDataset.GetProjection()  # 获取投影信息
driver = gdal.GetDriverByName("GTiff")#创建tiff图像驱动
im_bands=int(inputDataset.RasterCount)#获取波段数量
print(im_bands)

将原始卫星图像的矩阵信息宽度信息,高度信息,反射变化矩阵,投影信息,等写入到新的tif图像中

     if im_bands == 1:
            datasets = driver.Create(outputfilename,int((inputDataset.RasterXSize)),
            int((inputDataset.RasterYSize)), 1, inputBand.DataType)
            datasets.SetGeoTransform(im_geotrans)  # 写入仿射变换参数
            datasets.SetProjection(im_proj)  # 写入投影
      else:
            datasets = driver.Create(outputfilename, int((inputDataset.RasterXSize)), int((inputDataset.RasterYSize)), 3, inputBand.DataType)
            datasets.SetGeoTransform(im_geotrans)  # 写入仿射变换参数
            datasets.SetProjection(im_proj)  # 写入投影

卫星图像可能有一个波段,3个波段,甚至7个波段的信息,将每个波段的信息写入到对应的tif图像中,在这之前需要区分RGB通道,可以利用均值直方图信息,这里将图像一次缩小4倍,16倍,64倍…

 if im_bands >= 3:
            # for i in range(3):
            datasets.GetRasterBand(1).WriteArray(img_arraytif[2])
            datasets.GetRasterBand(2).WriteArray(img_arraytif[1])
            datasets.GetRasterBand(3).WriteArray(img_arraytif[0])
            for i in range(1, 4):
                datasets.GetRasterBand(i).ComputeStatistics(False)
                datasets.BuildOverviews('average', [1,2, 4, 8, 16, 32, 64])
 else:
            datasets.GetRasterBand(1).WriteArray(img_arraytif)
            datasets.GetRasterBand(1).ComputeStatistics(False)
            datasets.BuildOverviews('average', [1,2, 4, 8, 16, 32,64])
 del datasets

cv写入不同层数的图像金字塔所对应的图像

def show_pymaid(self):
    self.gdal_pymaid2()

    outputfilename = os.path.join(self.outputtfpath, "10.tif")
    

读取新创建的卫星图像基本信息,获取概率图深度,即金字塔层数和波段数量

 dataset = gdal.Open(outputfilename)
 # print(dataset)

 band = dataset.GetRasterBand(1)
 overviewNum = band.GetOverviewCount()

 print(dataset.RasterCount)
 print(overviewNum)
 im_bands = int(dataset.RasterCount)

不同波段的卫星图像,图像金字塔所对应的原始图像大小

if im_bands>1:
	rband = dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(6)
	r = roverviewBand.ReadAsArray()
	gband = dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(6)
	g = goverviewBand.ReadAsArray()
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(6)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([r, g, b])#正解
	# data = cv2.merge([b, g, r])
	print(data.shape)
	cv2.imwrite(f'{self.dir_path}/1.bmp', data)
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(5)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(5)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(5)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	print(data.shape)
	cv2.imwrite(f'{self.dir_path}/1.bmp',data)
	del data
	
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(4)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(4)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(4)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	print(data.shape)
	
	cv2.imwrite(f'{self.dir_path}/2.bmp',data)
	
	del data
	
	
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(3)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(3)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(3)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	print(data.shape)
	
	cv2.imwrite(f'{self.dir_path}/3.bmp',data)
	
	del data
	#
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(2)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(2)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(2)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	
	cv2.imwrite(f'{self.dir_path}/4.bmp',data)
	
	del data
	#
	#
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(1)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(1)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(1)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	print(data.shape)
	
	cv2.imwrite(f'{self.dir_path}/5.bmp',data)
	
	del data
	
	
	rband=dataset.GetRasterBand(3)
	roverviewBand = rband.GetOverview(0)
	r = roverviewBand.ReadAsArray()
	gband=dataset.GetRasterBand(2)
	goverviewBand = gband.GetOverview(0)
	g = goverviewBand.ReadAsArray()
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(0)
	b = broverviewBand.ReadAsArray()
	import numpy as np
	data=cv2.merge([r,g,b])
	# data = cv2.merge([b, g, r])
	print(data.shape)
	# io.imsave(f'{self.dir_path}/6.bmp',data)
	cv2.imwrite(f'{self.dir_path}/6.bmp',data)
	
	
	del data
else:
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(6)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	cv2.imwrite(f'{self.dir_path}/1.bmp', data)
	
	del data
	
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(5)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	
	cv2.imwrite(f'{self.dir_path}/1.bmp',data)
	
	del data
	
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(4)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	print(data.shape)
	
	cv2.imwrite(f'{self.dir_path}/2.bmp',data)
	
	del data
	
	
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(3)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	
	cv2.imwrite(f'{self.dir_path}/3.bmp',data)
	
	del data
	
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(2)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	
	cv2.imwrite(f'{self.dir_path}/4.bmp',data)
	
	del data
	
	bband = dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(1)
	b = broverviewBand.ReadAsArray()
	data = cv2.merge([b, b, b])
	
	cv2.imwrite(f'{self.dir_path}/5.bmp',data)
	
	del data
	
	bband=dataset.GetRasterBand(1)
	broverviewBand = bband.GetOverview(0)
	b = broverviewBand.ReadAsArray()
	data=cv2.merge([b,b,b])
	print(data.shape)
	
	cv2.imwrite(f'{self.dir_path}/6.bmp',data)
	
	# del data

你可能感兴趣的:(图像处理GDAL,python,pytorch,深度学习,图像处理)