在优先队列中,优先级高的元素先出队列,并非按照先进先出的要求,类似一个堆(heap)。其模板声明带有三个参数,priority_queue
优先级队列文档
empty() | 检测容器是否为空 |
---|---|
size() | 返回容器中有效元素个数 |
front() | 返回容器中第一个元素的引用 |
push_back() | 在容器尾部插入元素 |
pop_back() | 删除容器尾部元素 |
优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。
函数声明 | 接口说明 |
---|---|
priority_queue() | 构造一个空的优先级队列 |
empty( ) | 检测优先级队列是否为空,是返回true,否则返回false |
top( ) | 返回优先级队列中最大(最小元素),即堆顶元素 |
push(x) | 在优先级队列中插入元素x |
pop() | 删除优先级队列中最大(最小)元素,即堆顶元素 |
用法:
#include
#include
#include // greater算法的头文件
void TestPriorityQueue()
{
// 默认情况下,创建的是大堆,其底层按照小于号比较
vector<int> v{3,2,7,6,0,4,1,9,8,5};
priority_queue<int> q1;
for (auto& e : v)
q1.push(e);
cout << q1.top() << endl;
// 如果要创建小堆,将第三个模板参数换成greater比较方式
priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
cout << q2.top() << endl;
}
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
bool operator<(const Date& d)const
{
return (_year < d._year) ||
(_year == d._year && _month < d._month) ||
(_year == d._year && _month == d._month && _day < d._day);
}
bool operator>(const Date& d)const
{
return (_year > d._year) ||
(_year == d._year && _month > d._month) ||
(_year == d._year && _month == d._month && _day > d._day);
}
friend ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
private:
int _year;
int _month;
int _day;
};
void TestPriorityQueue()
{
// 大堆,需要用户在自定义类型中提供<的重载
priority_queue<Date> q1;
q1.push(Date(2018, 10, 29));
q1.push(Date(2018, 10, 28));
q1.push(Date(2018, 10, 30));
cout << q1.top() << endl;
// 如果要创建小堆,需要用户提供>的重载
priority_queue<Date, vector<Date>, greater<Date>> q2;
q2.push(Date(2018, 10, 29));
q2.push(Date(2018, 10, 28));
q2.push(Date(2018, 10, 30));
cout << q2.top() << endl;
}
通过对priority_queue的底层结构就是堆,因此此处只需对对进行通用的封装即可。
priority_queue.h
namespace my_priority_queue
{
//优先级队列
//小于
template<class T>
struct less
{
bool operator()(const T& x, const T& y)
{
return x < y;
}
};
//大于
template<class T>
struct greater
{
bool operator()(const T& x, const T& y)
{
return x > y;
}
};
template<class T, class Container = std::vector<int>, class Compare = less<T>>
class priority_queue
{
private:
//大堆 < 小堆 >
void AdjustUp(int child)
{
Compare comFunc;
int parent = (child - 1) / 2;
while (child > 0)
{
//if (_con[patent] < _con[child])
if (comFunc(_con[parent], _con[child]))
{
std::swap(_con[parent], _con[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void AdjustDown(int parent)
{
Compare comFunc;
int child = parent * 2 + 1;//默认左孩子
while (child < _con.size())
{
if (child + 1 < _con.size() && comFunc(_con[child], _con[child + 1]))
{
++child;
}
if (comFunc(_con[parent], _con[child]))
{
std::swap(_con[parent], _con[child]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
public:
priority_queue(const Compare& comFunc = Compare())
:_comFunc(comFunc)
{}
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& comFunc = Compare())
: _comFunc(comFunc)
{
while (first != last)
{
_con.push_back(*first);
++first;
}
//建堆
for (int i = (_con.size() - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(i);
}
}
void push(const T& x)
{
_con.push_back(x);
AdjustUp(_con.size() - 1);
}
void pop()
{
assert(!_con.empty());
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
AdjustDown(0);
}
const T& top()
{
return _con[0];
}
bool empty()
{
return _con.empty();
}
size_t size()
{
return _con.size();
}
private:
Container _con;
Compare _comFunc;
};
}