之前的文章分段介绍了 prometheus/tsdb
下的各个 pkg 的具体内容
这篇文章将完整分析 prometheus/tsdb
本身的实现
tombstones.go
Stone
Stone 是作为删除数据的标记
// Stone holds the information on the posting and time-range
// that is deleted.
type Stone struct {
ref uint64
intervals Intervals
}
Interval, Intervals
用来记录时间段
// Interval represents a single time-interval.
type Interval struct {
Mint, Maxt int64
}
func (tr Interval) inBounds(t int64) bool {
return t >= tr.Mint && t <= tr.Maxt
}
func (tr Interval) isSubrange(dranges Intervals) bool {
for _, r := range dranges {
if r.inBounds(tr.Mint) && r.inBounds(tr.Maxt) {
return true
}
}
return false
}
TombstoneReader
// TombstoneReader gives access to tombstone intervals by series reference.
type TombstoneReader interface {
// Get returns deletion intervals for the series with the given reference.
Get(ref uint64) (Intervals, error)
// Iter calls the given function for each encountered interval.
Iter(func(uint64, Intervals) error) error
// Close any underlying resources
Close() error
}
提供了一个内存版的实现
type memTombstones map[uint64]Intervals
var emptyTombstoneReader = memTombstones{}
// EmptyTombstoneReader returns a TombstoneReader that is always empty.
func EmptyTombstoneReader() TombstoneReader {
return emptyTombstoneReader
}
func (t memTombstones) Get(ref uint64) (Intervals, error) {
return t[ref], nil
}
func (t memTombstones) Iter(f func(uint64, Intervals) error) error {
for ref, ivs := range t {
if err := f(ref, ivs); err != nil {
return err
}
}
return nil
}
func (t memTombstones) add(ref uint64, itv Interval) {
t[ref] = t[ref].add(itv)
}
func (memTombstones) Close() error {
return nil
}
TombstoneReader 的内容可以被写入文件, 也可以通过文件读出.
func writeTombstoneFile(dir string, tr TombstoneReader) error {
path := filepath.Join(dir, tombstoneFilename)
tmp := path + ".tmp"
// ...
return renameFile(tmp, path)
}
func readTombstones(dir string) (memTombstones, error) {
b, err := ioutil.ReadFile(filepath.Join(dir, tombstoneFilename))
// ...
stonesMap := memTombstones{}
for d.len() > 0 {
// ...
stonesMap.add(k, Interval{mint, maxt})
}
return stonesMap, nil
}
wal.go
prometheus/tsdb 会将几类数据先写入 wal (write ahead log) 文件
// WALEntryType indicates what data a WAL entry contains.
type WALEntryType uint8
// Entry types in a segment file.
const (
WALEntrySymbols WALEntryType = 1
WALEntrySeries WALEntryType = 2
WALEntrySamples WALEntryType = 3
WALEntryDeletes WALEntryType = 4
)
// WAL is a write ahead log that can log new series labels and samples.
// It must be completely read before new entries are logged.
type WAL interface {
Reader() WALReader
LogSeries([]RefSeries) error
LogSamples([]RefSample) error
LogDeletes([]Stone) error
Truncate(mint int64, keep func(uint64) bool) error
Close() error
}
// WALReader reads entries from a WAL.
type WALReader interface {
Read(
seriesf func([]RefSeries),
samplesf func([]RefSample),
deletesf func([]Stone),
) error
}
与之相关的数据结构定义如下
// RefSeries is the series labels with the series ID.
type RefSeries struct {
Ref uint64
Labels labels.Labels
}
// RefSample is a timestamp/value pair associated with a reference to a series.
type RefSample struct {
Ref uint64
T int64
V float64
// 基于内存的 series 数据, 在后续的阅读中再仔细分析
series *memSeries
}
SegmentWAL
这是 WAL 的一个实现, 会将数据切成 256MB 一片进行存储, 切片的组织方式与 chunks 类似.
相应的, 操作文件的相关实现代码也很相似.
// segmentFile wraps a file object of a segment and tracks the highest timestamp
// it contains. During WAL truncating, all segments with no higher timestamp than
// the truncation threshold can be compacted.
type segmentFile struct {
*os.File
maxTime int64 // highest tombstone or sample timpstamp in segment
minSeries uint64 // lowerst series ID in segment
}
// SegmentWAL is a write ahead log for series data.
type SegmentWAL struct {
mtx sync.Mutex
metrics *walMetrics
dirFile *os.File
files []*segmentFile
logger log.Logger
flushInterval time.Duration
segmentSize int64
crc32 hash.Hash32
cur *bufio.Writer
curN int64
// 信号
stopc chan struct{}
donec chan struct{}
// 后台执行的操作
actorc chan func() error // sequentialized background operations
buffers sync.Pool
}
LogXXXX
LogSeries, LogSamples, LogDeletes 对各自的操作数据分别编码写入 WAL.
Truncate
// Truncate deletes the values prior to mint and the series which the keep function
// does not indiciate to preserve.
// 用于清除不再需要的数据
func (w *SegmentWAL) Truncate(mint int64, keep func(uint64) bool) error {
// ...
return nil
}
run
通过 OpenSegmentWAL
打开一个 SegmentWAL 的时候, 会在一个独立的 goroutine 中运行 run 函数, 用来处理 actorc
传递的后台操作.
目前 actorc
传递的操作仅有文件的分片
// cut finishes the currently active segments and opens the next one.
// The encoder is reset to point to the new segment.
func (w *SegmentWAL) cut() error {
// Sync current head to disk and close.
if hf := w.head(); hf != nil {
if err := w.flush(); err != nil {
return err
}
// Finish last segment asynchronously to not block the WAL moving along
// in the new segment.
// 结束当前的切片文件
go func() {
w.actorc <- func() error {
off, err := hf.Seek(0, os.SEEK_CUR)
if err != nil {
return errors.Wrapf(err, "finish old segment %s", hf.Name())
}
if err := hf.Truncate(off); err != nil {
return errors.Wrapf(err, "finish old segment %s", hf.Name())
}
if err := hf.Sync(); err != nil {
return errors.Wrapf(err, "finish old segment %s", hf.Name())
}
if err := hf.Close(); err != nil {
return errors.Wrapf(err, "finish old segment %s", hf.Name())
}
return nil
}
}()
}
// 初始化新的切片文件供写入
// ...
return nil
}
Compact.go
对底层存储的压缩相关的实现
// Compactor provides compaction against an underlying storage
// of time series data.
type Compactor interface {
// Plan returns a set of non-overlapping directories that can
// be compacted concurrently.
// Results returned when compactions are in progress are undefined.
Plan(dir string) ([]string, error)
// Write persists a Block into a directory.
Write(dest string, b BlockReader, mint, maxt int64) (ulid.ULID, error)
// Compact runs compaction against the provided directories. Must
// only be called concurrently with results of Plan().
Compact(dest string, dirs ...string) (ulid.ULID, error)
}
LeveledCompactor
是 Compactor 的实现
Plan
// Plan returns a list of compactable blocks in the provided directory.
func (c *LeveledCompactor) Plan(dir string) ([]string, error) {
dirs, err := blockDirs(dir)
// ...
var dms []dirMeta
for _, dir := range dirs {
// 读取 BlockMeta 作为判断是否可以 compact 的依据
meta, err := readMetaFile(dir)
// ...
}
return c.plan(dms)
}
populateBlock
LeveledCompactor.Write
和 LeveledCompactor.Compact
两个方法中都用到 LeveledCompactor.write
, 而 LeveledCompactor.populateBlock
是 write 方法的重要逻辑.
其作用是将一组 Block 的数据合并, 再写入 IndexWriter, ChunkWriter.
// populateBlock fills the index and chunk writers with new data gathered as the union
// of the provided blocks. It returns meta information for the new block.
func (c *LeveledCompactor) populateBlock(blocks []BlockReader, meta *BlockMeta, indexw IndexWriter, chunkw ChunkWriter) error {
var (
set ChunkSeriesSet
allSymbols = make(map[string]struct{}, 1<<16)
closers = []io.Closer{}
)
defer func() { closeAll(closers...) }()
// 遍历旧 block 数据
for i, b := range blocks {
indexr, err := b.Index()
// ...
chunkr, err := b.Chunks()
// ...
tombsr, err := b.Tombstones()
// ...
symbols, err := indexr.Symbols()
// ...
all, err := indexr.Postings(index.AllPostingsKey())
if err != nil {
return err
}
all = indexr.SortedPostings(all)
s := newCompactionSeriesSet(indexr, chunkr, tombsr, all)
// ...
// 与上一层并形成一个新的 merger
set, err = newCompactionMerger(set, s)
if err != nil {
return err
}
}
// We fully rebuild the postings list index from merged series.
// ...
// 遍历 merger
for set.Next() {
lset, chks, dranges := set.At() // The chunks here are not fully deleted.
// Skip the series with all deleted chunks.
// ...
if err := chunkw.WriteChunks(chks...); err != nil {
return errors.Wrap(err, "write chunks")
}
if err := indexw.AddSeries(i, lset, chks...); err != nil {
return errors.Wrap(err, "add series")
}
// ...
}
// ...
s := make([]string, 0, 256)
for n, v := range values {
// ...
if err := indexw.WriteLabelIndex([]string{n}, s); err != nil {
return errors.Wrap(err, "write label index")
}
}
for _, l := range postings.SortedKeys() {
if err := indexw.WritePostings(l.Name, l.Value, postings.Get(l.Name, l.Value)); err != nil {
return errors.Wrap(err, "write postings")
}
}
return nil
}
block.go
Block
Delete
// Delete matching series between mint and maxt in the block.
// 前面说到, Delete 的时候会暂时先标记为 Tombstone, 这里即实现部分
func (pb *Block) Delete(mint, maxt int64, ms ...labels.Matcher) error {
// ...
err = pb.tombstones.Iter(func(id uint64, ivs Intervals) error {
for _, iv := range ivs {
stones.add(id, iv)
pb.meta.Stats.NumTombstones++
}
return nil
})
if err != nil {
return err
}
pb.tombstones = stones
if err := writeTombstoneFile(pb.dir, pb.tombstones); err != nil {
return err
}
return writeMetaFile(pb.dir, &pb.meta)
}
CleanTombstones
// CleanTombstones will rewrite the block if there any tombstones to remove them
// and returns if there was a re-write.
func (pb *Block) CleanTombstones(dest string, c Compactor) (bool, error) {
numStones := 0
pb.tombstones.Iter(func(id uint64, ivs Intervals) error {
for _ = range ivs {
numStones++
}
return nil
})
if numStones == 0 {
return false, nil
}
if _, err := c.Write(dest, pb, pb.meta.MinTime, pb.meta.MaxTime); err != nil {
return false, err
}
return true, nil
}
Snapshot
疑问, 这里仅对目标文件夹及其内部文件做了 hardlink, 怎么确保内容不变?
head.go
Head
Head 向调用方提供, 用于某个时间段内的数据读写.
Head 会同时处理 WAL 内的和已经持久化的数据.
Head 可以认为是current Block
所有 Block 不可再写入, Head 在写入有效期过后会转化为 Block 进行持久化.
Appender
// Appender returns a new Appender on the database.
// 会根据具体情形决定返回的 Appender 实例
// Appender 实例共两类
// initAppender 会在接收到第一个数据点时初始化 Head 的起始时间
// headAppender 逻辑相对简单
func (h *Head) Appender() Appender {
h.metrics.activeAppenders.Inc()
// The head cache might not have a starting point yet. The init appender
// picks up the first appended timestamp as the base.
if h.MinTime() == math.MinInt64 {
return &initAppender{head: h}
}
return h.appender()
}
func (h *Head) appender() *headAppender {
return &headAppender{
head: h,
mint: h.MaxTime() - h.chunkRange/2,
samples: h.getAppendBuffer(),
highTimestamp: math.MinInt64,
}
}
querier.go
围绕以下三个接口, 向调用方提供查询能力.
// Querier provides querying access over time series data of a fixed
// time range.
type Querier interface {
// Select returns a set of series that matches the given label matchers.
Select(...labels.Matcher) (SeriesSet, error)
// LabelValues returns all potential values for a label name.
LabelValues(string) ([]string, error)
// LabelValuesFor returns all potential values for a label name.
// under the constraint of another label.
LabelValuesFor(string, labels.Label) ([]string, error)
// Close releases the resources of the Querier.
Close() error
}
// Series exposes a single time series.
type Series interface {
// Labels returns the complete set of labels identifying the series.
Labels() labels.Labels
// Iterator returns a new iterator of the data of the series.
Iterator() SeriesIterator
}
// SeriesSet contains a set of series.
type SeriesSet interface {
Next() bool
At() Series
Err() error
}
querier, blockQuerier
blockQuerier 是针对一个 block 的 Querier
querier 是 blockQuerier 的聚合
db.go
Appender
Appender 是写入接口, *Head 就实现了 Appender
// Appender allows appending a batch of data. It must be completed with a
// call to Commit or Rollback and must not be reused afterwards.
//
// Operations on the Appender interface are not goroutine-safe.
type Appender interface {
// Add adds a sample pair for the given series. A reference number is
// returned which can be used to add further samples in the same or later
// transactions.
// Returned reference numbers are ephemeral and may be rejected in calls
// to AddFast() at any point. Adding the sample via Add() returns a new
// reference number.
// If the reference is the empty string it must not be used for caching.
Add(l labels.Labels, t int64, v float64) (uint64, error)
// Add adds a sample pair for the referenced series. It is generally faster
// than adding a sample by providing its full label set.
AddFast(ref uint64, t int64, v float64) error
// Commit submits the collected samples and purges the batch.
Commit() error
// Rollback rolls back all modifications made in the appender so far.
Rollback() error
}
DB
DB 是向调用者提供的最主要的结构体.
// DB handles reads and writes of time series falling into
// a hashed partition of a seriedb.
type DB struct {
dir string
lockf *lockfile.Lockfile
logger log.Logger
metrics *dbMetrics
opts *Options
chunkPool chunkenc.Pool
compactor Compactor
// Mutex for that must be held when modifying the general block layout.
mtx sync.RWMutex
blocks []*Block
head *Head
compactc chan struct{}
donec chan struct{}
stopc chan struct{}
// cmtx is used to control compactions and deletions.
cmtx sync.Mutex
compactionsEnabled bool
}
reload
// reload on-disk blocks and trigger head truncation if new blocks appeared. It takes
// a list of block directories which should be deleted during reload.
func (db *DB) reload(deleteable ...string) (err error) {
// ...
// 读取当前所有的 block 目录
dirs, err := blockDirs(db.dir)
// ...
var (
blocks []*Block
exist = map[ulid.ULID]struct{}{}
)
for _, dir := range dirs {
meta, err := readMetaFile(dir)
// ...
// 尝试获取目录对应的 Block, 先从内存, 再从硬盘
b, ok := db.getBlock(meta.ULID)
if !ok {
b, err = OpenBlock(dir, db.chunkPool)
// ...
}
blocks = append(blocks, b)
exist[meta.ULID] = struct{}{}
}
// 按照 Block 覆盖的时间重新排序
if err := validateBlockSequence(blocks); err != nil {
return errors.Wrap(err, "invalid block sequence")
}
// ...
// 清除不必要的 Block 文件
for _, b := range oldBlocks {
if _, ok := exist[b.Meta().ULID]; ok {
continue
}
if err := b.Close(); err != nil {
level.Warn(db.logger).Log("msg", "closing block failed", "err", err)
}
if err := os.RemoveAll(b.Dir()); err != nil {
level.Warn(db.logger).Log("msg", "deleting block failed", "err", err)
}
}
// Garbage collect data in the head if the most recent persisted block
// covers data of its current time range.
if len(blocks) == 0 {
return nil
}
maxt := blocks[len(blocks)-1].Meta().MaxTime
return errors.Wrap(db.head.Truncate(maxt), "head truncate failed")
}
run
run 方法在 Open 时被调用, 在一个单独的 goroutine 中执行, 主要是定期对数据进行压缩以节省空间
func (db *DB) run() {
defer close(db.donec)
backoff := time.Duration(0)
for {
select {
case <-db.stopc:
return
case <-time.After(backoff):
}
select {
case <-time.After(1 * time.Minute):
select {
case db.compactc <- struct{}{}:
default:
}
case <-db.compactc:
// 执行压缩相关代码
case <-db.stopc:
return
}
}
}
Appender
返回的是封装的结果 dbAppender, 后面专门再分析
Qurier
返回的是所有指定时间范围内的 Block 聚合
// Querier returns a new querier over the data partition for the given time range.
// A goroutine must not handle more than one open Querier.
func (db *DB) Querier(mint, maxt int64) (Querier, error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
m := b.Meta()
// 找出符合时间段的 block
if intervalOverlap(mint, maxt, m.MinTime, m.MaxTime) {
blocks = append(blocks, b)
}
}
// 前面提到, Head 可以视作当前 Block
if maxt >= db.head.MinTime() {
blocks = append(blocks, db.head)
}
// Block 的聚合
sq := &querier{
blocks: make([]Querier, 0, len(blocks)),
}
for _, b := range blocks {
q, err := NewBlockQuerier(b, mint, maxt)
if err == nil {
sq.blocks = append(sq.blocks, q)
continue
}
// If we fail, all previously opened queriers must be closed.
for _, q := range sq.blocks {
q.Close()
}
return nil, errors.Wrapf(err, "open querier for block %s", b)
}
return sq, nil
}
Delete
这边实际会将 Delete 操作分给各个受影响的 Block
CleanTombstone
前面提到, 各个 Block Delete 内的逻辑实际是写 WAL 以及 Tombstone 文件
这里会对当前所有 Block 真正进行清理, 然后调用 reload
方法.
dbAppender
是对 *headAppender 的封装, 在 Commit 的时候触发 compact
// Appender opens a new appender against the database.
func (db *DB) Appender() Appender {
return dbAppender{db: db, Appender: db.head.Appender()}
}
// dbAppender wraps the DB's head appender and triggers compactions on commit
// if necessary.
type dbAppender struct {
Appender
db *DB
}
func (a dbAppender) Commit() error {
err := a.Appender.Commit()
// We could just run this check every few minutes practically. But for benchmarks
// and high frequency use cases this is the safer way.
if a.db.head.MaxTime()-a.db.head.MinTime() > a.db.head.chunkRange/2*3 {
select {
case a.db.compactc <- struct{}{}:
default:
}
}
return err
}
Summary
prometheus/tsdb
(下称 ptsdb ) 的结构体之间的层次大概可以这样划分:
-
DB: 对外提供的核心对象
- Block 已经持久化的, 覆盖某个时间段的时序数据. Block 的
- Index: 用于保存 labels 的索引数据
- Chunk: 用于保存时间戳-采样值 数据
- Block 已经持久化的, 覆盖某个时间段的时序数据. Block 的
- Head: 由于 ptsdb 规定, 数据必须增序写入, 已经持久化的 Block 不能再写入, 因此一个时刻只会有一个可供写入的 Block, 即 Head. Head 同时还承担记录删除动作的任务
- WAL 增删改的动作都会先进入 WAL, 供后续恢复用
- Tombstone: 用于标记删除动作, 被标记的数据在 compact 的时候统一清理
- Compactor: 对文件进行压缩. Block 数据的组织参考了 LSM, 因此 Compactor 的实现也和基于 LSM 的 kv db 类似.
关于 ptsdb, 时间序列数据的存储和计算 - 开源时序数据库解析(四) 这篇文章有更宏观的阐述, 可以参考.