prometheus/tsdb 的源码阅读笔记 0x03

之前的文章分段介绍了 prometheus/tsdb 下的各个 pkg 的具体内容
这篇文章将完整分析 prometheus/tsdb 本身的实现

tombstones.go

Stone

Stone 是作为删除数据的标记

// Stone holds the information on the posting and time-range
// that is deleted.
type Stone struct {
    ref       uint64
    intervals Intervals
}
Interval, Intervals

用来记录时间段

// Interval represents a single time-interval.
type Interval struct {
    Mint, Maxt int64
}

func (tr Interval) inBounds(t int64) bool {
    return t >= tr.Mint && t <= tr.Maxt
}

func (tr Interval) isSubrange(dranges Intervals) bool {
    for _, r := range dranges {
        if r.inBounds(tr.Mint) && r.inBounds(tr.Maxt) {
            return true
        }
    }

    return false
}
TombstoneReader
// TombstoneReader gives access to tombstone intervals by series reference.
type TombstoneReader interface {
    // Get returns deletion intervals for the series with the given reference.
    Get(ref uint64) (Intervals, error)

    // Iter calls the given function for each encountered interval.
    Iter(func(uint64, Intervals) error) error

    // Close any underlying resources
    Close() error
}

提供了一个内存版的实现

type memTombstones map[uint64]Intervals

var emptyTombstoneReader = memTombstones{}

// EmptyTombstoneReader returns a TombstoneReader that is always empty.
func EmptyTombstoneReader() TombstoneReader {
    return emptyTombstoneReader
}

func (t memTombstones) Get(ref uint64) (Intervals, error) {
    return t[ref], nil
}

func (t memTombstones) Iter(f func(uint64, Intervals) error) error {
    for ref, ivs := range t {
        if err := f(ref, ivs); err != nil {
            return err
        }
    }
    return nil
}

func (t memTombstones) add(ref uint64, itv Interval) {
    t[ref] = t[ref].add(itv)
}

func (memTombstones) Close() error {
    return nil
}

TombstoneReader 的内容可以被写入文件, 也可以通过文件读出.

func writeTombstoneFile(dir string, tr TombstoneReader) error {
    path := filepath.Join(dir, tombstoneFilename)
    tmp := path + ".tmp"
    
    // ...

    return renameFile(tmp, path)
}
func readTombstones(dir string) (memTombstones, error) {
    b, err := ioutil.ReadFile(filepath.Join(dir, tombstoneFilename))
    // ...

    stonesMap := memTombstones{}

    for d.len() > 0 {
        // ...
        stonesMap.add(k, Interval{mint, maxt})
    }

    return stonesMap, nil
}

wal.go

prometheus/tsdb 会将几类数据先写入 wal (write ahead log) 文件

// WALEntryType indicates what data a WAL entry contains.
type WALEntryType uint8

// Entry types in a segment file.
const (
    WALEntrySymbols WALEntryType = 1
    WALEntrySeries  WALEntryType = 2
    WALEntrySamples WALEntryType = 3
    WALEntryDeletes WALEntryType = 4
)
// WAL is a write ahead log that can log new series labels and samples.
// It must be completely read before new entries are logged.
type WAL interface {
    Reader() WALReader
    LogSeries([]RefSeries) error
    LogSamples([]RefSample) error
    LogDeletes([]Stone) error
    Truncate(mint int64, keep func(uint64) bool) error
    Close() error
}

// WALReader reads entries from a WAL.
type WALReader interface {
    Read(
        seriesf func([]RefSeries),
        samplesf func([]RefSample),
        deletesf func([]Stone),
    ) error
}

与之相关的数据结构定义如下

// RefSeries is the series labels with the series ID.
type RefSeries struct {
    Ref    uint64
    Labels labels.Labels
}

// RefSample is a timestamp/value pair associated with a reference to a series.
type RefSample struct {
    Ref uint64
    T   int64
    V   float64

    // 基于内存的 series 数据, 在后续的阅读中再仔细分析
    series *memSeries
}

SegmentWAL

这是 WAL 的一个实现, 会将数据切成 256MB 一片进行存储, 切片的组织方式与 chunks 类似.

相应的, 操作文件的相关实现代码也很相似.

// segmentFile wraps a file object of a segment and tracks the highest timestamp
// it contains. During WAL truncating, all segments with no higher timestamp than
// the truncation threshold can be compacted.
type segmentFile struct {
    *os.File
    maxTime   int64  // highest tombstone or sample timpstamp in segment
    minSeries uint64 // lowerst series ID in segment
}

// SegmentWAL is a write ahead log for series data.
type SegmentWAL struct {
    mtx     sync.Mutex
    metrics *walMetrics

    dirFile *os.File
    files   []*segmentFile

    logger        log.Logger
    flushInterval time.Duration
    segmentSize   int64

    crc32 hash.Hash32
    cur   *bufio.Writer
    curN  int64

    // 信号
    stopc   chan struct{}
    donec   chan struct{}
    
    // 后台执行的操作
    actorc  chan func() error // sequentialized background operations
    
    buffers sync.Pool
}
LogXXXX

LogSeries, LogSamples, LogDeletes 对各自的操作数据分别编码写入 WAL.

Truncate
// Truncate deletes the values prior to mint and the series which the keep function
// does not indiciate to preserve.
// 用于清除不再需要的数据
func (w *SegmentWAL) Truncate(mint int64, keep func(uint64) bool) error {
    // ...

    return nil
}
run

通过 OpenSegmentWAL 打开一个 SegmentWAL 的时候, 会在一个独立的 goroutine 中运行 run 函数, 用来处理 actorc 传递的后台操作.

目前 actorc 传递的操作仅有文件的分片

// cut finishes the currently active segments and opens the next one.
// The encoder is reset to point to the new segment.
func (w *SegmentWAL) cut() error {
    // Sync current head to disk and close.
    if hf := w.head(); hf != nil {
        if err := w.flush(); err != nil {
            return err
        }
        
        // Finish last segment asynchronously to not block the WAL moving along
        // in the new segment.
        // 结束当前的切片文件
        go func() {
            w.actorc <- func() error {
                off, err := hf.Seek(0, os.SEEK_CUR)
                if err != nil {
                    return errors.Wrapf(err, "finish old segment %s", hf.Name())
                }
                if err := hf.Truncate(off); err != nil {
                    return errors.Wrapf(err, "finish old segment %s", hf.Name())
                }
                if err := hf.Sync(); err != nil {
                    return errors.Wrapf(err, "finish old segment %s", hf.Name())
                }
                if err := hf.Close(); err != nil {
                    return errors.Wrapf(err, "finish old segment %s", hf.Name())
                }
                return nil
            }
        }()
    }

    // 初始化新的切片文件供写入
    // ...
    
    return nil
}

Compact.go

对底层存储的压缩相关的实现

// Compactor provides compaction against an underlying storage
// of time series data.
type Compactor interface {
    // Plan returns a set of non-overlapping directories that can
    // be compacted concurrently.
    // Results returned when compactions are in progress are undefined.
    Plan(dir string) ([]string, error)

    // Write persists a Block into a directory.
    Write(dest string, b BlockReader, mint, maxt int64) (ulid.ULID, error)

    // Compact runs compaction against the provided directories. Must
    // only be called concurrently with results of Plan().
    Compact(dest string, dirs ...string) (ulid.ULID, error)
}
LeveledCompactor

是 Compactor 的实现

Plan
// Plan returns a list of compactable blocks in the provided directory.
func (c *LeveledCompactor) Plan(dir string) ([]string, error) {
    dirs, err := blockDirs(dir)
    
    // ...
  
    var dms []dirMeta

    for _, dir := range dirs {
        // 读取 BlockMeta 作为判断是否可以 compact 的依据
        meta, err := readMetaFile(dir)
        
        // ...
    }
    return c.plan(dms)
}
populateBlock

LeveledCompactor.WriteLeveledCompactor.Compact 两个方法中都用到 LeveledCompactor.write, 而 LeveledCompactor.populateBlock 是 write 方法的重要逻辑.

其作用是将一组 Block 的数据合并, 再写入 IndexWriter, ChunkWriter.

// populateBlock fills the index and chunk writers with new data gathered as the union
// of the provided blocks. It returns meta information for the new block.
func (c *LeveledCompactor) populateBlock(blocks []BlockReader, meta *BlockMeta, indexw IndexWriter, chunkw ChunkWriter) error {
    var (
        set        ChunkSeriesSet
        allSymbols = make(map[string]struct{}, 1<<16)
        closers    = []io.Closer{}
    )
    defer func() { closeAll(closers...) }()

    // 遍历旧 block 数据
    for i, b := range blocks {
        indexr, err := b.Index()
        // ...

        chunkr, err := b.Chunks()
        // ...

        tombsr, err := b.Tombstones()
        // ...

        symbols, err := indexr.Symbols()
        // ...

        all, err := indexr.Postings(index.AllPostingsKey())
        if err != nil {
            return err
        }
        all = indexr.SortedPostings(all)

        s := newCompactionSeriesSet(indexr, chunkr, tombsr, all)

        // ...
      
        // 与上一层并形成一个新的 merger
        set, err = newCompactionMerger(set, s)
        if err != nil {
            return err
        }
    }

    // We fully rebuild the postings list index from merged series.
    // ...

    // 遍历 merger
    for set.Next() {
        lset, chks, dranges := set.At() // The chunks here are not fully deleted.

        // Skip the series with all deleted chunks.
        // ...

        if err := chunkw.WriteChunks(chks...); err != nil {
            return errors.Wrap(err, "write chunks")
        }

        if err := indexw.AddSeries(i, lset, chks...); err != nil {
            return errors.Wrap(err, "add series")
        }

        // ...
    }
    
    // ...

    s := make([]string, 0, 256)
    for n, v := range values {
        // ...

        if err := indexw.WriteLabelIndex([]string{n}, s); err != nil {
            return errors.Wrap(err, "write label index")
        }
    }

    for _, l := range postings.SortedKeys() {
        if err := indexw.WritePostings(l.Name, l.Value, postings.Get(l.Name, l.Value)); err != nil {
            return errors.Wrap(err, "write postings")
        }
    }
    return nil
}

block.go

Block
Delete
// Delete matching series between mint and maxt in the block.
// 前面说到, Delete 的时候会暂时先标记为 Tombstone, 这里即实现部分
func (pb *Block) Delete(mint, maxt int64, ms ...labels.Matcher) error {
    // ...

    err = pb.tombstones.Iter(func(id uint64, ivs Intervals) error {
        for _, iv := range ivs {
            stones.add(id, iv)
            pb.meta.Stats.NumTombstones++
        }
        return nil
    })
    if err != nil {
        return err
    }
    pb.tombstones = stones

    if err := writeTombstoneFile(pb.dir, pb.tombstones); err != nil {
        return err
    }
    return writeMetaFile(pb.dir, &pb.meta)
}
CleanTombstones
// CleanTombstones will rewrite the block if there any tombstones to remove them
// and returns if there was a re-write.
func (pb *Block) CleanTombstones(dest string, c Compactor) (bool, error) {
    numStones := 0

    pb.tombstones.Iter(func(id uint64, ivs Intervals) error {
        for _ = range ivs {
            numStones++
        }

        return nil
    })

    if numStones == 0 {
        return false, nil
    }

    if _, err := c.Write(dest, pb, pb.meta.MinTime, pb.meta.MaxTime); err != nil {
        return false, err
    }

    return true, nil
}
Snapshot

疑问, 这里仅对目标文件夹及其内部文件做了 hardlink, 怎么确保内容不变?

head.go

Head

Head 向调用方提供, 用于某个时间段内的数据读写.

Head 会同时处理 WAL 内的和已经持久化的数据.

Head 可以认为是current Block

所有 Block 不可再写入, Head 在写入有效期过后会转化为 Block 进行持久化.

Appender
// Appender returns a new Appender on the database.
// 会根据具体情形决定返回的 Appender 实例
// Appender 实例共两类
// initAppender 会在接收到第一个数据点时初始化 Head 的起始时间
// headAppender 逻辑相对简单
func (h *Head) Appender() Appender {
    h.metrics.activeAppenders.Inc()

    // The head cache might not have a starting point yet. The init appender
    // picks up the first appended timestamp as the base.
    if h.MinTime() == math.MinInt64 {
        return &initAppender{head: h}
    }
    return h.appender()
}

func (h *Head) appender() *headAppender {
    return &headAppender{
        head:          h,
        mint:          h.MaxTime() - h.chunkRange/2,
        samples:       h.getAppendBuffer(),
        highTimestamp: math.MinInt64,
    }
}

querier.go

围绕以下三个接口, 向调用方提供查询能力.

// Querier provides querying access over time series data of a fixed
// time range.
type Querier interface {
    // Select returns a set of series that matches the given label matchers.
    Select(...labels.Matcher) (SeriesSet, error)

    // LabelValues returns all potential values for a label name.
    LabelValues(string) ([]string, error)
    // LabelValuesFor returns all potential values for a label name.
    // under the constraint of another label.
    LabelValuesFor(string, labels.Label) ([]string, error)

    // Close releases the resources of the Querier.
    Close() error
}

// Series exposes a single time series.
type Series interface {
    // Labels returns the complete set of labels identifying the series.
    Labels() labels.Labels

    // Iterator returns a new iterator of the data of the series.
    Iterator() SeriesIterator
}

// SeriesSet contains a set of series.
type SeriesSet interface {
    Next() bool
    At() Series
    Err() error
}
querier, blockQuerier

blockQuerier 是针对一个 block 的 Querier

querier 是 blockQuerier 的聚合

db.go

Appender

Appender 是写入接口, *Head 就实现了 Appender

// Appender allows appending a batch of data. It must be completed with a
// call to Commit or Rollback and must not be reused afterwards.
//
// Operations on the Appender interface are not goroutine-safe.
type Appender interface {
    // Add adds a sample pair for the given series. A reference number is
    // returned which can be used to add further samples in the same or later
    // transactions.
    // Returned reference numbers are ephemeral and may be rejected in calls
    // to AddFast() at any point. Adding the sample via Add() returns a new
    // reference number.
    // If the reference is the empty string it must not be used for caching.
    Add(l labels.Labels, t int64, v float64) (uint64, error)

    // Add adds a sample pair for the referenced series. It is generally faster
    // than adding a sample by providing its full label set.
    AddFast(ref uint64, t int64, v float64) error

    // Commit submits the collected samples and purges the batch.
    Commit() error

    // Rollback rolls back all modifications made in the appender so far.
    Rollback() error
}
DB

DB 是向调用者提供的最主要的结构体.

// DB handles reads and writes of time series falling into
// a hashed partition of a seriedb.
type DB struct {
    dir   string
    lockf *lockfile.Lockfile

    logger    log.Logger
    metrics   *dbMetrics
    opts      *Options
    chunkPool chunkenc.Pool
    compactor Compactor

    // Mutex for that must be held when modifying the general block layout.
    mtx    sync.RWMutex
    blocks []*Block

    head *Head

    compactc chan struct{}
    donec    chan struct{}
    stopc    chan struct{}

    // cmtx is used to control compactions and deletions.
    cmtx               sync.Mutex
    compactionsEnabled bool
}
reload
// reload on-disk blocks and trigger head truncation if new blocks appeared. It takes
// a list of block directories which should be deleted during reload.
func (db *DB) reload(deleteable ...string) (err error) {
    // ...
    
    // 读取当前所有的 block 目录
    dirs, err := blockDirs(db.dir)
    
    // ...
    
    var (
        blocks []*Block
        exist  = map[ulid.ULID]struct{}{}
    )

    for _, dir := range dirs {
        meta, err := readMetaFile(dir)
        
        // ...

        // 尝试获取目录对应的 Block, 先从内存, 再从硬盘
        b, ok := db.getBlock(meta.ULID)
        if !ok {
            b, err = OpenBlock(dir, db.chunkPool)
            
            // ...
        }

        blocks = append(blocks, b)
        exist[meta.ULID] = struct{}{}
    }

    // 按照 Block 覆盖的时间重新排序
    if err := validateBlockSequence(blocks); err != nil {
        return errors.Wrap(err, "invalid block sequence")
    }

    // ...
    
    // 清除不必要的 Block 文件
    for _, b := range oldBlocks {
        if _, ok := exist[b.Meta().ULID]; ok {
            continue
        }
        if err := b.Close(); err != nil {
            level.Warn(db.logger).Log("msg", "closing block failed", "err", err)
        }
        if err := os.RemoveAll(b.Dir()); err != nil {
            level.Warn(db.logger).Log("msg", "deleting block failed", "err", err)
        }
    }

    // Garbage collect data in the head if the most recent persisted block
    // covers data of its current time range.
    if len(blocks) == 0 {
        return nil
    }
    maxt := blocks[len(blocks)-1].Meta().MaxTime

    return errors.Wrap(db.head.Truncate(maxt), "head truncate failed")
}
run

run 方法在 Open 时被调用, 在一个单独的 goroutine 中执行, 主要是定期对数据进行压缩以节省空间

func (db *DB) run() {
    defer close(db.donec)

    backoff := time.Duration(0)

    for {
        select {
        case <-db.stopc:
            return
        case <-time.After(backoff):
        }

        select {
        case <-time.After(1 * time.Minute):
            select {
            case db.compactc <- struct{}{}:
            default:
            }
        case <-db.compactc:
            // 执行压缩相关代码

        case <-db.stopc:
            return
        }
    }
}
Appender

返回的是封装的结果 dbAppender, 后面专门再分析

Qurier

返回的是所有指定时间范围内的 Block 聚合

// Querier returns a new querier over the data partition for the given time range.
// A goroutine must not handle more than one open Querier.
func (db *DB) Querier(mint, maxt int64) (Querier, error) {
    var blocks []BlockReader

    db.mtx.RLock()
    defer db.mtx.RUnlock()

    for _, b := range db.blocks {
        m := b.Meta()
        
        // 找出符合时间段的 block
        if intervalOverlap(mint, maxt, m.MinTime, m.MaxTime) {
            blocks = append(blocks, b)
        }
    }
    
    // 前面提到, Head 可以视作当前 Block
    if maxt >= db.head.MinTime() {
        blocks = append(blocks, db.head)
    }

    // Block 的聚合
    sq := &querier{
        blocks: make([]Querier, 0, len(blocks)),
    }
    for _, b := range blocks {
        q, err := NewBlockQuerier(b, mint, maxt)
        if err == nil {
            sq.blocks = append(sq.blocks, q)
            continue
        }
        // If we fail, all previously opened queriers must be closed.
        for _, q := range sq.blocks {
            q.Close()
        }
        return nil, errors.Wrapf(err, "open querier for block %s", b)
    }
    return sq, nil
}
Delete

这边实际会将 Delete 操作分给各个受影响的 Block

CleanTombstone

前面提到, 各个 Block Delete 内的逻辑实际是写 WAL 以及 Tombstone 文件

这里会对当前所有 Block 真正进行清理, 然后调用 reload 方法.

dbAppender

是对 *headAppender 的封装, 在 Commit 的时候触发 compact

// Appender opens a new appender against the database.
func (db *DB) Appender() Appender {
    return dbAppender{db: db, Appender: db.head.Appender()}
}

// dbAppender wraps the DB's head appender and triggers compactions on commit
// if necessary.
type dbAppender struct {
    Appender
    db *DB
}

func (a dbAppender) Commit() error {
    err := a.Appender.Commit()

    // We could just run this check every few minutes practically. But for benchmarks
    // and high frequency use cases this is the safer way.
    if a.db.head.MaxTime()-a.db.head.MinTime() > a.db.head.chunkRange/2*3 {
        select {
        case a.db.compactc <- struct{}{}:
        default:
        }
    }
    return err
}

Summary

prometheus/tsdb (下称 ptsdb ) 的结构体之间的层次大概可以这样划分:

  • DB: 对外提供的核心对象

    • Block 已经持久化的, 覆盖某个时间段的时序数据. Block 的
      • Index: 用于保存 labels 的索引数据
      • Chunk: 用于保存时间戳-采样值 数据
  • Head: 由于 ptsdb 规定, 数据必须增序写入, 已经持久化的 Block 不能再写入, 因此一个时刻只会有一个可供写入的 Block, 即 Head. Head 同时还承担记录删除动作的任务
    • WAL 增删改的动作都会先进入 WAL, 供后续恢复用
    • Tombstone: 用于标记删除动作, 被标记的数据在 compact 的时候统一清理
  • Compactor: 对文件进行压缩. Block 数据的组织参考了 LSM, 因此 Compactor 的实现也和基于 LSM 的 kv db 类似.

关于 ptsdb, 时间序列数据的存储和计算 - 开源时序数据库解析(四) 这篇文章有更宏观的阐述, 可以参考.

你可能感兴趣的:(prometheus/tsdb 的源码阅读笔记 0x03)