- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- GitHub 趋势日报 (2025年06月28日)
qianmoQ
GitHub项目趋势日报(2025年)github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图572ottomator-agents425twenty286Graphite132full-stack-fastapi-template130flux127sniffnet87generative-ai-for-beginners82pot-
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- Linux netstat 指令
halugin
Linux指令linux运维
Linuxnetstat指令netstat(NetworkStatistics)是Linux系统中用于查看网络状态、连接、路由表和接口统计信息的经典命令行工具。它为系统管理员和开发人员提供了强大的网络诊断功能,帮助分析网络连接、监控流量以及排查网络问题。尽管在现代Linux系统中,netstat正在被更新的工具(如ss)部分取代,但其简单性和广泛适用性使其仍然是许多场景下的首选工具。什么是nets
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【深度学习|学习笔记】生成模型(Generative Model)和判别模型(Discriminative Model)的原理、数学定义、经典模型、优劣对比、联系与融合详解。
努力毕业的小土博^_^
机器学习基础算法优质笔记1深度学习学习笔记人工智能神经网络
【深度学习|学习笔记】生成模型(GenerativeModel)和判别模型(DiscriminativeModel)的原理、数学定义、经典模型、优劣对比、联系与融合详解。【深度学习|学习笔记】生成模型(GenerativeModel)和判别模型(DiscriminativeModel)的原理、数学定义、经典模型、优劣对比、联系与融合详解。文章目录【深度学习|学习笔记】生成模型(Generative
- WAN:Open and advanced large-scale video generative models
Kun Li
图像视频生成大模型深度学习人工智能
https://zhuanlan.zhihu.com/p/28890549605https://zhuanlan.zhihu.com/p/28890549605WanAI|Wan2.1:LeadingAIVideoGenerationModel
- GitHub 趋势日报 (2025年05月31日)
qianmoQ
GitHub项目趋势日报github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图1153prompt-eng-interactive-tutorial509BillionMail435ai-agents-for-beginners128onlook112free-for-dev89generative-ai-for-beg
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 【深度学习】16. Deep Generative Models:生成对抗网络(GAN)
pen-ai
深度学习机器学习深度学习生成对抗网络人工智能
DeepGenerativeModels:生成对抗网络(GAN)什么是生成建模(GenerativeModeling)生成模型的主要目标是从数据中学习其分布,从而具备“生成”数据的能力。两个关键任务:密度估计(DensityEstimation):学习真实数据的概率分布p(x)p(x)p(x)。样本生成(SampleGeneration):从模型学习的分布中采样,生成新样本。换句话说,生成建模不是
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解
盼小辉丶
pytorch生成对抗网络生成模型生成式人工智能
PyTorch实战(7)——生成对抗网络实践详解0.前言1.生成对抗网络训练步骤2.准备训练数据2.1创建训练数据集2.2准备训练数据集3.构建生成对抗网络3.1判别器网络3.2生成器网络3.3模型训练3.4生成器的保存与加载小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)最早由IanGoodfellow于2014年提出,其中“对抗”一词指的是两
- Gartner研究报告《Generative AI 赋能Digital Commerce的三种路径》学习心得
架构师学习成长之路
人工智能
一、研究背景随着生成式AI(GenAI)技术的迅速发展,其在数字商务领域的应用受到了广泛关注。这篇研究报告深入探讨了GenAI在数字商务中的角色以及它如何与现有的数字商务技术相结合来发挥优势,为应用领导者提供了关于如何利用GenAI优化技术投资策略的见解。二、GenAI对数字商务的影响概述(一)优化技术性能和业务价值尽管GenAI有其优势和局限性,但它通过优化现有AI和数字商务技术的性能和业务价值
- 【黑盒对抗攻击】ICML 2021:SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation
BIT可达鸭
▶深度学习-计算机视觉对抗攻击黑盒攻击模型可解释性人工智能神经网络
【黑盒对抗攻击】SPADE:ASpectralMethodforBlack-BoxAdversarialRobustnessEvaluation论文地址:代码地址:论文摘要:主要问题:主要思路:主要贡献:基本概念:谱图理论:对抗性鲁棒性的机器学习:对抗性鲁棒性评估:具体实现:整体框架:基于图的流形构造:ML模型的SPADE分数:距离度量:SPADE分数:输入数据样本的SPADE分数:SPADE分数
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- Generative Pre-trained Transformer
科学禅道
大模型专栏深度学习模型专栏transformer深度学习人工智能
GenerativePre-trainedTransformer(GPT)referstoaclassofdeeplearningmodelsdevelopedbyOpenAI,specificallydesignedfornaturallanguageprocessingtasks.GPTmodelsarebasedonthetransformerarchitectureandarepre-tr
- GPT( Generative Pre-trained Transformer )模型:基于Transformer
sbc-study
gpttransformer深度学习
GPT是由openAI开发的一款基于Transformer架构的预训练语言模型,拥有强大的生成能力和多任务处理能力,推动了自然语言处理(NLP)的快速发展。一GPT发展历程1.1GPT-1(2018年)是首个基于Transformer架构的模型,使用掩码自注意力机制,但是仅仅关注了参数左侧数据,没有关注右侧数据,是之前文章学习过的单项Transformer,用这个也是为了模拟人类的自左向右生成语言
- 快速读文章-Adversarial Training Towards Robust Multimedia Recommender System
无意识积累中
推荐系统深度学习计算机视觉人工智能
摘要:随着网络上多媒体内容的普及,迫切需要开发能够有效利用多媒体数据中丰富信号的推荐解决方案。由于深度神经网络在表征学习中的成功,多媒体推荐的最新进展主要集中在探索深度学习方法以提高推荐精度上。然而,迄今为止,很少有人研究多媒体表示的健壮性及其对多媒体推荐性能的影响。本文对多媒体推荐系统的鲁棒性进行了研究。通过使用最先进的推荐框架和深度图像特征,我们证明了整个系统的鲁棒性不强,因此,对输入图像进行
- 【论文阅读】Adversarial Training Towards Robust Multimedia Recommender System
hongjianMa
#多模态-论文阅读论文阅读推荐系统VBPR对抗深度学习多模态
AdversarialTrainingTowardsRobustMultimediaRecommenderSystem题目翻译:面向鲁棒多媒体推荐系统的对抗训练论文链接:点这里标签:多媒体推荐、对抗训练、推荐系统鲁棒性摘要随着多媒体内容在网络上的普及,迫切需要开发能够有效利用多媒体数据中丰富信息的推荐解决方案。由于深度神经网络在表示学习方面的成功,近期多媒体推荐的研究主要集中在探索深度学习方法以提
- GPT-4o(Generative Pre-trained Transformer 4 omni)模型
彬彬侠
大模型GPT-4ogptOpenAItransformer
GPT-4o是由OpenAI开发的一种先进的多模态大语言模型(MultimodalLargeLanguageModel),于2024年5月13日正式发布。它是GPT-4系列的升级版本,相较于之前的模型(如GPT-4和GPT-3.5),GPT-4o在多模态能力、性能和效率上有了显著提升。以下是对GPT-4o的详细介绍。GPT-4o模型概述GPT-4o的“o”代表“omni”(全能),象征其在处理多种
- 生成对抗网络(Generative Adversarial Networks GANs)
嘿丨嘿
生成对抗网络人工智能神经网络深度学习机器学习大数据
生成对抗网络(GenerativeAdversarialNetworks,GANs)是一种深度学习模型,由IanGoodfellow等人在2014年提出。GAN由两个神经网络组成:生成器(Generator)和判别器(Discriminator),它们通过对抗训练的方式进行优化。以下是详细介绍:1.基本概念生成器(G):生成器试图生成逼真的假样本(如图像),其输入通常是随机噪声(如高斯噪声或均匀噪
- 生成对抗网络(Generative Adversarial Network,简称GAN
俊星学长
生成对抗网络人工智能神经网络
生成对抗网络(GenerativeAdversarialNetwork,简称GAN)是一种深度学习模型,自2014年由IanGoodfellow等人提出以来,在人工智能领域得到了广泛应用。GAN通过两个神经网络——生成器(Generator)和判别器(Discriminator)的相互对抗来进行学习,从而生成逼真的数据。以下将详细解释GAN的基本原理及其训练过程。一、GAN的基本原理GAN的基本原
- 【机器学习】生成对抗网络 (Generative Adversarial Networks | GAN)
林九生
人工智能机器学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetworks|GAN)介绍生成对抗网络(GenerativeAdversarialNetworks,简称GAN)是一种强大的深度学习模型,用于生成具有逼真感的图像、音频和文本等内容。GAN的核心理念是通过训练两个神经网络,生成器(Generator)和判别器(Discriminator),它们相互对抗、相互学习,以提高生成器生成数据的质量
- SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks论文笔记
catbird233
深度生成模型笔记
另一篇很好的解释:https://www.itcodemonkey.com/article/6378.html摘要在自然语言生成领域,不同情感标签的生成越来越受到人们的关注。近年来,生成性对抗网(gan)在文本生成方面取得了良好的效果。然而,gan产生的文本通常存在质量差、缺乏多样性和模式崩溃的问题。本文提出了一个新的框架--sentyan,它有多个生成器和一个多类判别器,以解决上述问题。在我们的
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models
CSPhD-winston-杨帆
LLMs-安全论文翻译语言模型人工智能自然语言处理
UniversalandTransferableAdversarialAttacksonAlignedLanguageModelshttps://arxiv.org/pdf/2307.15043v2通用且可转移的对抗性攻击对齐语言模型文章目录通用且可转移的对抗性攻击对齐语言模型摘要1引言2一个针对LLMs的通用攻击2.1产生肯定回应2.2贪婪坐标==梯度==搜索2.3通用多提示和多模型攻击3实验结
- 论文阅读:2023 arxiv Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks
CSPhD-winston-杨帆
论文阅读LLMs-安全论文阅读语言模型人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328SurveyofVulnerabilitiesinLargeLanguageModelsRevealedbyAdversarialAttacks对抗性攻击揭示的大型语言模型漏洞调查https://arxiv.org/pdf/2310.10844速览大型语言模型中
- 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks
Bosenya12
论文阅读
摘要训练深度学习(DL)模型需要专有数据和计算密集型资源。为了收回训练成本,模型提供商可以通过机器学习即服务(MLaaS)将DL模型货币化。通常,该模型部署在云中,同时为付费查询提供可公开访问的应用程序编程接口(API)以获得好处。然而,模型窃取攻击对这种模型货币化计划构成了安全威胁,因为它们窃取了模型,而没有为未来的大量查询付费。具体来说,攻击者通过对目标模型进行查询,获取输入输出对,从而通过对
- GAN:Generative Adversarial Nets
「已注销」
经典论文生成对抗网络人工智能神经网络深度学习
文章信息题目:GAN:GenerativeAdversarialNets原文:https://arxiv.org/pdf/1406.2661.pdf代码:www.github.com/goodfeli/adversarial数据集:MNIST\CIFAR-10\theTorontoFaceDatabase一、简述 GAN,即对抗生成网络,最初由由IanGoodfellow于2014年提出,GAN
- GAN, Generative Adversarial Networks(生成式对抗网络)
一杯水果茶!
视觉与网络生成对抗网络人工智能神经网络
深度学习中最有趣的领域–GAN,GenerativeAdversarialNetworks(生成式对抗网络)GAN的基础概念GAN被“卷积网络之父”YannLeCun(杨立昆)誉为「过去十年计算机科学领域最有趣的想法之一」,是近年来火遍全网,AI研究者最为关注的深度学习技术方向之一。生成式对抗网络,简称GAN,是一种近年来大热的深度学习模型,该模型由两个基础神经网络即生成器神经网络(Generat
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end