HashMap
主要用来存放键值对,它基于哈希表的 Map 接口实现,是常用的 Java 集合之一,是非线程安全的。可以存储null
值,但是只有一个key可以为null
,有多个值可以为null
。
JDK1.8 以后的 HashMap
在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。
HashMap
默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。并且, HashMap
总是使用 2 的幂作为哈希表的大小。
HashMap只提供了put
来添加元素,put
内部调用putVal
方法
对putVal 的分析如下:
说明:直接覆盖之后会return,不会有后续操作;链表长度大于阈值8并且数组长度大于64的时候才会转换红黑树,否则只是扩容数组。
put方法:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//(n - 1) & hash 确定元素存放在哪个桶中,桶为空,
//新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//桶中已经存在元素
else {
Node<K,V> e; K k;
//key相等,hash相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
//将元素赋值给e
e = p;
//hash值不相等,即key不相等,并且该节点是红黑树节点
else if (p instanceof TreeNode)
//放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//链表节点
else {
//在链表末尾插入节点
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//节点数量达到阈值8,执行treeifyBin方法
//此方法会根据HashMap的数组来决定是否要转换为红黑树
//数组长度大于等于64才会转换为红黑树,否则只会扩容数组
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
//跳出循环
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//桶中有key值和hash值于插入节点相等的节点
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
//覆盖以后返回旧值
return oldValue;
}
}
++modCount;
//插入完成后实际大小大于阈值,需要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//容量超过最大值就不再扩容
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//没超过最大值扩容到原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//扩容完成后,重新进行hash分配,写入数据
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}