- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- 深度学习超参数优化(HPO)终极指南:从入门到前沿
摘要:在深度学习的实践中,模型性能的好坏不仅取决于算法和数据,更在一半程度上取决于超参数的精妙设置。本文是一篇关于超参数优化(HyperparameterOptimization,HPO)的综合性指南,旨在带领读者从最基础的概念出发,系统性地梳理从经典到前沿的各类优化方法,并最终落地于实用策略和现代工具。无论您是初学者还是资深从业者,都能从中获得宝贵的见解。第一部分:夯实基础——HPO的核心概念1
- 基于R语言的极值统计学及其在相关领域中的实践技术应用
科研的力量
语言类课程极值统计学
受到气候变化、温室效应以及人类活动等因素的影响,自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁;在人类社会中,股市崩溃、金融危机等极端情况也时有发生;今年的新冠疫情就是非常典型的极端现象。研究此类极端现象需要新的统计学方法,该类统计学的理论和方法都与传统的基于高斯分布的统计学模型有极大的不同。极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的
- 工业大模型应用报告:新机遇、挑战与未来展望
花生糖@
AIGC学习资料库大模型人工智能应用扩展屏应用开发AI机器学习
大模型在工业智能化发展中的新机遇、挑战与展望。以下是报告的核心内容概述:大模型为工业智能化发展带来新机遇大模型开启人工智能应用新时代,推动技术创新和应用。大模型有望成为驱动工业智能化的引擎,提高研发效率、拓展生产制造智能化应用边界、提升经营管理水平。大模型应用落地需要深度适配工业场景,解决行业知识和企业特定环境的理解问题。大模型和小模型在工业领域将长期并存小模型应用呈现倒U型分布,主要集中在生产制
- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- sqlite数据库字段类型
鹿灏楷silves
pythonwebsqlsqlite3djangopython数据库
数据库字段类型:字符型字段topic=models.CharField(max_length=)#需要传入参数,设置字符串的最长长度email=models.EmailTield()#电子邮箱字段,在CharField基础上,增加了邮箱的正则验证a=models.SlugField()#仅含有字母下划线数字和连字符的字符串url=models.URLField()#url字段,默认长度200字符f
- 飞算JavaAI
一、产品简介飞算JavaAI是专为Java开发者打造的智能开发助手,深度适配Java技术栈。通过大语言模型(LLM)实现自然语言到代码的转换,覆盖需求分析、接口设计、表结构设计、业务逻辑生成、代码生成与合并等全流程开发环节。其核心优势在于:全流程自动化:从需求输入到完整工程代码生成,单日可完成传统数周的开发任务。代码质量保障:生成的代码符合阿里巴巴Java开发规范,支持静态代码分析工具自动检测安全
- SQLite可视化管理工具汇总
班力勤
程序员sqlitejvm数据库
截至2012/9/14最新版本SQLiteSpy1.9.1–28Jul2011单文件,界面设计紧凑,较稳定,功能较少,创建表与添加数据均需sql语句,快捷键教方便,作为数据浏览和修改工具极佳,视图编码为utf-8,对gbk2312显示乱码。能满足一般的应用,但没有导出数据表功能,同时只能打开一个数据库文件不支持二进制字段编辑2、SQLiteStudio(推荐)开源免费单文件http://sqlit
- Jfinal+SQLite解决MYSQL迁移表未复制索引问题,完善迁移工具
原mysql表查询存在索引,查询sql含forceindex(字段),SQLite不支持,会报错解决办法,要么删除索引,要么强制执行索引换成INDEXEDBY,Stringselectsql="select*";StringfromSql="fromtableNameforceindex(START_TIME_TYPE)where1=1if(fromSql.contains("forceindex
- 多租户SaaS系统中设计安全便捷的跨租户流程共享
Alex艾力的IT数字空间
安全功能测试架构中间件微服务网络安全代码规范
四维协同架构,结合动态授权、加密传输、行为审计和智能策略一、权限控制体系1.动态权限模型2.授权策略实现RBAC+ABAC混合模型在流程表增加shared_tenants字段存储授权信息,结合属性动态校验:CREATETABLEworkflow_process(process_idVARCHAR(36)PRIMARYKEY,tenant_idVARCHAR(36)NOTNULL,shared_te
- 黄仁勋对话Transformer七子:模型的未来在于数据质量,而非规模
强化学习曾小健
#AI商业/产品/投融资前沿#LLM大语言模型transformer深度学习人工智能
黄仁勋对话Transformer七子:模型的未来在于数据质量,而非规模乌鸦智能说2024-03-2216:14在今年的GTC大会上,英伟达CEO黄仁勋邀请了Transformer的七位作者(NikiParmar因故临时未能出席)参与圆桌论坛的讨论,这是Transformer团队首次在公开场合集体亮相。2017年,八位在谷歌工作的AI科学家发表了一篇名为《AttentionIsAllYouNeed》
- 深度对比:innerHTML vs 虚拟DOM——原理、性能与应用全解析
止观止
前端前端框架前端html5javascriptreactjsxss
引言在现代Web开发中,高效操作DOM(文档对象模型)是构建高性能应用的关键。传统方法如innerHTML和新兴的虚拟DOM(VirtualDOM)技术代表了两种截然不同的DOM更新策略。innerHTML作为浏览器原生API,直接操纵HTML字符串;虚拟DOM则是通过JavaScript对象树进行优化更新,广泛应用于React、Vue等框架。本文深入对比两者的核心原理、技术细节、应用场景及优劣,
- 『大模型笔记』Geoffrey Hinton对Al研究人才选拔的直觉,未来影响及技术展望的深入见解!
AI大模型前沿研究
大模型笔记大模型人工智能Hintonllya大语言模型多模态大脑工作方式
GeoffreyHinton对Al研究人才选拔的直觉,未来影响及技术展望的深入见解!文章目录一.整个访谈内容1.1.起点:理解大脑的工作方式以及隐藏层命名的由来1.2.谈Ilya:他有很好的直觉1.3.预测下一个词也需要推理1.4.模型能从语言中学到很多,但从多模态中学习会更容易1.5.关于认知的三种观点1.6.黄仁勋送了我一块GPU1.7.数字系统有人类无法比拟的优势1.8.需要得到重视的快速权
- 源力觉醒!百度文心4.5对比Qwen3:开源大模型双雄终极评测
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
>2024年大模型战场硝烟再起,百度携文心4.5强势入局开源领域,与阿里通义千问Qwen3上演"双雄争霸"。这场技术对决将如何重塑AI开发格局?本文将带您深入技术腹地,揭秘两大模型的真实战力!###一、战局全景:开源大模型进入"双巨头时代"####最新技术格局(2024年7月)|**维度**|**文心4.5**|**Qwen3**||----------------|---------------
- pytest--1--pytest-mock常用的方法
Chasing__Dreams
pytestpytest
1.mocker.patchmocker.patch是最常用的方法,用于替换指定的对象或方法。它可以用于模拟函数、方法、类或模块。语法mocker.patch(target,new=DEFAULT,spec=None,create=False,spec_set=None,autospec=None,new_callable=None,**kwargs)示例importpytestfrommy_mo
- AI大模型开发工程师之路:从零到一的进阶指南
当前最热门的技术无疑是AI大模型。虽然它的应用前景广阔,但真正精通大模型技术的人还不多。然而,市场对大模型的需求却在不断增长,吸引了不少开发者想要转行进入这个领域。然而,面对新技术,许多人心中充满疑虑,担心自己无法掌握。笔者也是充满疑虑,然后直到我看到这本书籍,感觉受益匪浅,给与了很多指导和引路,先分享给大家,也希望可以帮助更多的小伙伴。一起开启大模型之路。加油加油加油!!!目录1.大模型开发知识
- ColQwen-Omni:RAG全模态检索来了,支持【文本|图像|视频|音频】四种模态!
致Great
音视频
还记得ColPali、ColQwen和DSE吗?这些模型开创了视觉文档检索的新范式:无需费力地从文档中提取文本进行处理,只需将文档页面视为一系列图像(屏幕截图),然后训练视觉语言模型(VLM)直接将其内容表示为向量。ColPali的实践表明,这种策略通常比其他替代方法更快、更简单,并且能带来更好的检索性能。自发布一年以来,ColPali和ColQwen系列模型已被下载数百万次,被誉为“2024年顶
- C++-linux 7.文件IO(二)文件描述符、阻塞与非阻塞
HHRL-yx
C++-linux系统编程linuxc++服务器
文件IO进阶:文件描述符、阻塞与非阻塞在前文我们介绍了文件IO的核心系统调用,本章将深入探讨Linux文件IO的底层机制,包括文件描述符的本质、阻塞与非阻塞IO模型、文件偏移量控制(lseek)以及系统调用中的参数传递规则,帮助你构建更完整的系统编程知识体系。一、文件描述符:进程与文件的桥梁在Linux系统中,当我们打开或创建一个文件(或套接字)时,操作系统会提供一个文件描述符(FileDescr
- 20250716|【继续19的快慢指针】Leetcodehot100之237【pass】&今天计划
周树皮
17boypython
20250716Definitionforsingly-linkedlist.怎么设置比它快多少呢?如果给head是这么做。题目Definitionforsingly-linkedlist.classListNode(object):definit(self,x):self.val=xself.next=None实际就是把那题的n替换成现在的valuedummy->0->1->2->3->null
- Java使用Langchai4j接入AI大模型的简单使用(四)--整合Springboot
moxiaoran5753
javaspringbootspring
一、在Maven中引入依赖核心配置如下,这里使用的是Springboog3,jdk17,注意版本,如果启动不起来很有可能是版本冲突:17UTF-8UTF-83.4.31.0.0-beta1dev.langchain4jlangchain4j-community-dashscope-spring-boot-starterorg.springframework.bootspring-boot-star
- 互联网大厂Java求职面试:基于Spring AI与云原生架构的RAG系统设计与实现
在未来等你
Java场景面试宝典JavaSpringAiRAG系统云原生
互联网大厂Java求职面试:基于SpringAI与云原生架构的RAG系统设计与实现场景背景郑薪苦,一位自称“代码界的段子手”的程序员,正在参加某互联网大厂的技术总监面试。面试官是技术总监李总,拥有丰富的架构设计经验,尤其擅长AI与大模型技术、云原生架构等领域。今天的面试主题围绕企业知识库与AI大模型的深度融合架构展开,重点探讨如何设计一个高性能、可扩展的RAG(Retrieval-Augmente
- 浅谈MySQL SQL优化的底层原理
干净的坏蛋
mysqlsql数据库
深入理解MySQL的SQL优化底层原理,需要从查询的执行流程出发,结合优化器原理、执行计划生成机制、索引原理和存储引擎行为全面剖析。以下是完整的底层视角分析:✅一、MySQLSQL查询的底层执行流程客户端->SQL解析器->查询优化器->执行器->存储引擎(如InnoDB)1.SQL解析(Parser)词法分析+语法分析→生成抽象语法树(AST)比如:识别出SELECT、FROM、WHERE、字段
- Agent架构解析及分布式Agent协作方案
来源:AI大模型应用实践AIAgent(智能体)系统发展迅猛,且关注点已经不再局限在Agent的规划推理等基本能力,智能体系统在扩展性、互操作、安全性等工程化方面的挑战也越来越引起重视,比如最近的MCP和A2A。上一篇我们介绍了A2A,今天接着再聊聊分布式Agent系统的话题。Agent模式架构解析Agent有效减少人类工作总量,人与AI协作才是最终形态。人类与AI交互可大致分为三种模式。Embe
- 如何增强LLM(大语言模型)的“置信度”和“自信心” :LLM的“自信”不是“什么都能答”,而是“该答的答得准,不该答的敢说不”。
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力语言模型人工智能自然语言处理深度学习transformer机器学习
如何增强LLM(大语言模型)的“置信度”和“自信心”Pleaseprovideafirmanswer,andforthosewhodon’tknow,pleasereply‘unknown’LLM(大语言模型)的“置信度”(对输出内容的准确性判断)和“自信心”(稳定输出可靠信息的能力),核心逻辑与传统模型相通——让模型在“已知且可靠的知识范围内输出”,同时避免“强行回答陌生问题”。但LLM因生成式
- Redis 深度解析:从核心原理到生产实践
Pasregret
缓存redis数据库缓存
Redis深度解析:从核心原理到生产实践一、Redis核心定位与数据结构1.核心能力矩阵深度解析Redis作为高性能内存数据库,核心能力覆盖缓存、数据存储、消息中间件等场景,其设计哲学围绕速度优先、内存高效、功能丰富展开:内存存储特性纯内存操作:基于内存寻址的O(1)复杂度数据操作,单节点QPS可达10万+持久化方案:RDB(快照)与AOF(日志)双模式,支持数据持久化与故障恢复单线程模型:基于事
- vLLM快速入门:开启高效推理与部署之旅
在如今这个人工智能飞速发展的时代,语言模型的应用已经深入到我们生活的方方面面,从智能聊天机器人到文本生成工具,都离不开强大的语言模型技术支持。而vLLM作为一个专注于高效推理和部署的开源项目,正在为研究人员和开发人员提供一种全新的解决方案,让语言模型的使用变得更加便捷、高效。初识vLLM:背景与意义vLLM(VeryLargeLanguageModelInference)是一个专注于大型语言模型推
- 深入解析 vLLM 分布式推理与部署策略
在当今人工智能快速发展的时代,大型语言模型(LLM)的推理和部署面临着诸多挑战,尤其是当模型规模日益庞大时,如何高效地利用硬件资源成为关键问题。vLLM作为一种强大的工具,为分布式推理和部署提供了多种策略,本文将详细探讨其相关技术和应用场景,希望能对您提供有价值的参考。分布式推理策略的选择在开始分布式推理和部署之前,明确何时采用分布式推理以及可选的策略至关重要。1.单GPU推理:如果模型能够在单个
- 妖爷的三点儿
三月暖阳2017
此处没有小黄文,更没小黄图,只是我分享完毕,我们洞主发自内心的高文彩的感慨。拷贝如下:图片发自App1.一直以来,我们有那么多探索性格、分析特质的书籍,比如性格色彩、九型人格、disc性格分析模型,在不断探索自我,认识自我,最根本的目的,是为了达到幸福。这个角度的分析,恰恰说明一个真理:我是一切的根源。当我们归因和找出路从自己出发的时候,就开始接近正确答案了。今天对这个问题再次感受很深,是因为下午
- AI产品经理面试宝典第30天:AI+教育个性化学习与知识图谱相关面试题的解答指导
TGITCIC
AI产品经理一线大厂面试题人工智能产品经理AI产品经理面试大模型产品经理面试AI面试大模型面试
自适应学习系统如何实现千人千面?面试官:请用产品视角解释AI自适应学习系统的核心逻辑你的回答:自适应学习系统本质是构建"数据-模型-决策"的闭环。以沪江Hitalk为例,其通过12级能力评估体系采集学员的听、说、读、写数据,利用知识图谱建立知识点关联网络。当学员完成"实景演练-诊断反馈-学习包推送"的完整链路时,系统会动态调整知识图谱权重,形成个性化学习路径。面试官追问:如何验证个性化效果?回答:
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟